
DeepInsight: A methodology to transform a non-image data to an
image for convolution neural network architecture

Alok Sharma1,2,3,*, Edwin Vans3, Daichi Shigemizu1,4,5,6, Keith A Boroevich1, Tatsuhiko Tsunoda1,4,6,7*

1Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Japan.

2Institute for Integrated and Intelligent Systems, Griffith University, Australia.
3School of Engineering & Physics, University of the South Pacific, Fiji

4CREST, JST, Tokyo, Japan
5Division of Genomic Medicine, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.
6Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
7Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University
of Tokyo, Tokyo, Japan.

*corresponding authors: alok.fj@gmail.com, tsunoda.mesm@mri.tmd.ac.jp .

	

Supplementary	File	1	

Normalizations	used	for	DeepInsight	
	

Here we describe two types of normalization used in this work: norm-1 and norm-2. For norm-1, each
feature is normalized by its minimum and maximum. This will bring a feature between 0 and 1. This type
of normalization will assume that features are mutually independent as a feature is normalized by its
extrema values. The minimum and maximum values for norm-1 can be computed in the following manner.

Max$ = max
'()*+,'

𝑋./(𝑗, ∶)

Min$ = min
'()*+,'

𝑋./(𝑗, ∶)

Where 𝑋./ is the training set and (𝑗, :) refers to all the samples of the 𝑗th feature or attribute. Therefore,
Max$ and Min$ are the maximum and minimum of the 𝑗th attribute. These extrema values are used to
normalize training, validation and test sets as

𝑋./ 𝑗, : =
𝑋./ 𝑗, : − Min$
Max$ − Min$

𝑋9(+ 𝑗, : =
𝑋9(+ 𝑗, : − Min$
Max$ − Min$

𝑋.,'. 𝑗, : =
𝑋.,'. 𝑗, : − Min$
Max$ − Min$

Where 𝑗 = 1,2, … , 𝑑, and 𝑑 is the dimension of the samples in the dataset. If after normalization any feature
value of the validation set or test set is less than 0 or greater than 1, then such feature values are clamped
between 0 and 1 to maintain the consistency.

In the norm-2 normalization will try to keep the topology of the features up to some extent. In this method,
the minimum value is adjusted for each feature or attribute, and then a global maximum is used in the

logarithmic scale to place the feature values between 0 and 1. The norm-2 is conducted in the following
manner:

Min$ = min
'()*+,'

𝑋./(𝑗, ∶)

𝑋./ 𝑗, : ← log(𝑋./(𝑗, :) + Min$ + 1)
Max = max(𝑋./)

𝑋./ 𝑗, : ←
𝑋./(𝑗, :)
Max

The validation and test sets are adjusted using the training extrema values for normalization. In case, after
adjusting by the minimum values (Min$), any element of validation or test set is less than 0 then it is clamped
at 0. Similarly, if after normalizing by the maximum value (Max) any feature from the validation and test
sets are above 1 then it is clamped to 1.
	

Supplementary	File	2	

Parameters	for	DeepInsight	
	

In	this	supplement,	we	describe	parameters	used	for	DeepInsight	method.		

CNN	parameter	

Four	convolution	layers	are	implemented	in	a	parallel	configuration.	The	Bayes	optimization	technique	is	
used	 to	 find	 the	best	parameters	 from	a	 range	of	values	used.	The	 filter	 size	or	window	size	 for	each	
parallel	layer	is	different.	The	parameters,	like	the	number	of	filters,	momentum,	and	l2-regularization,	
are	same.	The	maximum	objective	evaluation	and	maximum	epochs	are	set	to	100.	The	parameters	are	
summarized	in	Table	S2.1	

	

Table	S2.1:	Training	parameter	options	for	DeepInsight	method	

Variables	 Values/range		
FilterSize-1	 [2	8]	~	[2	10]	
FilterSize-2	 [4	20]	~	[4	30]	
InitialNumFilters	 [2	16]	~	[4	16]	
Momentum	 [0.8	0.95]	
L2regularization	 [1e-10	1e-2]	
MaxObjectiveEvaluation	 100	
MaxTime	 8x60x60	~	24x60x60	
ExecutionEnvironment	 Multiple-gpu	
LearningRateSchedule	 Piecewise	
LearningRateDropPeriod	 35	
LearningRateDropFactpr	 0.1	
InitialLearnRate	 [1e-3	1e-1]	~[1e-5	1e-1]	
MiniBatchSize	 128	
PoolSize	 [2	2]	
Stride	 [2	2]	

	

The	range	of	values	are	applied	during	the	training	session	and	best	the	values	were	selected	which	gave	
the	least	validation	error.	

	

Dimensionality	reduction	technique	

We	utilized	 t-SNE	 and	 kernel	 PCA	 for	 finding	 locations	 of	 features.	 In	 case	of	 t-SNE,	 if	 the	 number	 of	
features	is	less	than	5000	then	the	exact	algorithm	is	used	otherwise	Burneshut	algorithm	is	applied	(to	
speed	 up	 processing).	 The	 default	 distance	 in	 t-SNE	 is	 ‘cosine’.	 For	 kernel	 PCA	 two	 eigenvectors	

corresponding	 to	 the	 leading	 eigenvalues	 are	 used	 to	 do	 transformation.	 The	 kernel	 type	 used	 was	
‘Gaussian’.			

	

Feature	mapping	

Once	the	feature	locations	are	defined	using	the	training	set,	the	next	step	is	to	map	feature	values	to	
these	locations.	If	two	or	more	than	two	features	occupy	the	same	location	then	their	averaged	values	
are	used;	i.e.,	if	locations	of	𝑔#, 𝑔% 	and	𝑔& 	are	the	same	(𝑎, 𝑏)	then	(𝑔# + 𝑔% + 𝑔&)/3	will	be	mapped	on	
this	location.	This	will	allow	lossy	compression	of	features.	The	validation	and	test	sets	use	the	feature	
locations	obtained	using	the	training	set.	For	the	empty	pixels;	i.e.,	pixels	that	do	not	contain	any	features	
are	referred	as	Base,	and	its	value	is	fixed	as	1.	

	

Pixel	frame	

The	pixel	size	can	be	arranged	automatically	or	can	be	fixed.	The	auto-mode	determines	the	size	𝐴×𝐵	by	
utilizing	 the	 distance	 of	 two	 nearest	 feature	 location	 (referred	 as	𝑑2#3	 in	 equations	 S6.3	 and	 S6.4	 of	
Supplement	 File	 6).	 However,	 this	 will	 enlarge	 the	 pixel	 size	 and	 therefore	 it	 is	 limited	 by	maximum	
predefined	size	of	either	𝐴	or	𝐵.	If	maximum	size	is	𝑀	the	the	pixel	size	is	adjusted	accordingly.	In	this	
work,	we	used	maximum	pixel	size	as	120×120	and	200×200.	

	

	

Supplementary	File	3	

Results	
	

A	dataset	is	first	partitioned	into	three	segments,	namely	train,	validation	and	test	sets.	The	proportion	of	
train,	validation	and	test	is	roughly	80:10:10.	All	the	results	are	on	test	sets.		

	

For	DeepInsight	method,	we	optimized	the	parameters	using	train	and	validation	sets.	The	parameters	
selected	are	those	for	which	the	validation	error	is	minimum.	DeepInsight	method	employs	norm-1	and	
norm-2	normalization	(as	described	in	the	manuscript	and	Supplement	File	1)	and	the	validation	error	is	
evaluated	on	both	these	norms,	and	the	norm	which	provided	the	lowest	validation	error	 is	used.	The	
validation	errors	for	both	the	norms	are	depicted	in	Table	S3.1	.	

	

Table	S3.1:	Validation	error	on	all	the	datasets	using	pixel	size	120×120.	

Datasets	 Norm-1	 Norm-2	
RNA-seq	 0.0179	 0.0161	
Vowels	 0.0292	 0.0425	
Relathe	 0.1875	 0.1484	
Madelon	 0.1667	 0.2650	
Ringnorm-DELVA	 0.0015	 0.0015	

	

The	validation	error	for	RNA-seq	dataset	when	pixel	size	is	200×200	was	also	obtained.	The	values	for	
norm-1	is	0.0233	and	for	norm-2	it	is	0.0179;	i.e.,	norm-2	is	selected	in	this	case	due	to	lower	validation	
error.	The	test	accuracy	obtained	was	99%.	

For	pixel	size	120×120	the	test	accuracies	obtained	are	depicted	in	Table	S3.2	

	

Table	S3.2:	Accuracy	on	test	set	when	pixel	size	120×120	is	used.	

Datasets	 Accuracy	
RNA-seq	 98%	
Vowels	 97%	
Relathe	 92%	
Madelon	 88%	
Ringnorm-DELVA	 98%	

	

	

Supplementary	File	4	

Codes	description	
This	package	is	written	in	Matlab.	It	has	two	main	components:	transforming	into	pixels	and	processing	
via	convolution	neural	networks	(CNNs).	A	summary	of	the	code	and	how	to	use	it	is	discussed	herein.	As	
an	example	dataset,	ringnorm-DELVE	is	provided	with	the	package.	

	

1)	Dataset	struct	

The	dataset	(dset)	should	be	in	the	following	struct	format	

Xtrain	 [d	x	n]	(where	d	is	the	number	of	features	and	n	is	the	number	of	training	samples)	
Xtest	 [d	x	m]	(where	m	is	the	number	of	test	samples)	
num_tr	 [p1,	q1,	r1	…]	(number	of	samples	in	each	class	for	training	dataset)	
num_tst	 [p2,	q2,	r2,	…]	(number	of	samples	in	each	class	for	test	dataset)	
class	 number	of	classes	or	categories	
dim	 number	of	features	or	attributes	d	
Set	 name	of	the	dataset	

	

The	training	samples	are	arranged	in	the	following	manner.	All	samples	belong	to	one	class	are	kept	first,	
then	the	samples	of	2nd	class	is	positioned	and	so	on.	The	same	was	done	for	the	test	set.	

	

2)	Main.m	is	the	main	file.	It	requires	the	following	parameters	to	set	

Parm.fid	 Results.txt	file	will	register	the	output	
Parm.Method	 Select	dimensionality	reduction	methods	from	‘tSNE’,	‘kPCA’,	‘PCA’	
Parm.Max_Px_Size	 The	maximum	pixel	size	max([A,B])	
Parm.MPS_Fix	 If	this	value	is	1	then	pixel	size	will	be	PxP	otherwise	MxN	or	NxM	where	M	(if	

𝑀 > 𝑁)	 is	Max_Px_Size	and	N	is	determined	by	eq	S6.3/S6.4	(see	Supplement	
File	6).	

Parm.ValidRatio	 Define	ratio	of	validation	over	train.	
Parm.Seed	 Random	seed	to	split	training	and	validation	sets.	

	

3)	Training	and	test	of	DeepInsight	model	

DeepInsight_train	is	used	for	training	the	model	and	DeepInsight_test	is	to	evaluate	the	accuracy	

Usage:		

Model	=	DeepInsight_train(dset,	Parm)	 Only	training	samples	and	Parm	are	required	
Accuracy	=	DeepInsight_test(dset,model)	 Only	test	samples	and	model	are	required	

	

	

4)	Transformation	to	pixel	image	form	

Cart2Pixel	and	ConvPixel	are	used	to	convert	Cartesian	coordinates	to	pixel	frames.		

	

5)	Bayesian	optimization	parameter	for	convolution	neural	network	

Two	parallel	 layers	are	used.	See	Table	S2.1	(Supplement	File	2)	for	details	about	range	of	parameters	
explored.	It	is	required	to	set	the	parameters	as	desired.	Layer	connections	can	be	modified	by	changing	
functions	in	makeObjFcn2.m	file.	

Network	models	are	stored	in	DeepResults	folder	during	the	run	time.	The	dataset	is	placed	in	Data	folder.	

	

	

Supplementary File 5

Non-linear dimensionality reduction techniques

In this supplement, we describe two non-linear dimensionality reduction techniques employed in the
DeepInsight method. These techniques are t-distributed stochastic neighbor embedding (t-SNE) (Maaten
and Hinton, 2008) and kernel principal component analysis (PCA) (Schölkopf et al., 1998).

t-SNE
The t-SNE technique visualizes high-dimensional data on a two or three dimensional plane for clustering
samples.

The mapping from higher dimensional space to lower dimensional space happens in a non-linear fashion.
The samples with similarity, map close to each other, and with dissimilarities mapped apart. This
technique is a variant of stochastic neighbor embedding (Hinton and Roweis, 2002) and easier to
optimize, leading to better visualizations.

Many linear dimensionality reduction techniques map data to a 2D plane (DeepInsight does not require
3D transformation by t-SNE). However, mapped samples are highly convoluted, and it becomes very
challenging for clustering algorithms to find a reasonable level of groupings. On the other hand, this
technique has the potential to map very high dimensional data to a 2D plane while trying to keep the
topology, or in other words, with minimum error. This enables understanding of complex data structures
in a lower dimensional space. However, the processing time of t-SNE can be prolonged. For faster
processing, the Barneshut algorithm is used to approximate joint distributions instead of the exact
computation.

The t-SNE technique has two main steps. In the first step, it constructs a probability distribution over
pairs of samples such that similar samples have higher probability and dissimilar samples have lower
probability. In the second step, it finds the probability distribution in a 2D plane. Then it minimizes the
Kullback-Leibler divergence between the two distributions belonging to lower- and higher-dimensional
spaces using a gradient descent method.

t-SNE uses Euclidean distance (however, in DeepInsight, cosine distance was used) to compute
probabilities. The conditional probability, 𝑝"|$, used in t-SNE, is a measure of the probability that a
sample 𝑥$ will pick 𝑥" as its neighbor under Gaussian distribution. It can be defined as

 𝑝"|$ =
'()	(, -.,-/

0
/23.

0)

'()	(, -.,-5
0/23.

0)56.
		 (S5.1)

where 𝑥 ∈ ℝ9 and 𝜎$ is the variance of the Gausssian that is centered at sample 𝑥$. Since t-SNE is only
interested in pairwise probability, 𝑝$|$, has been set to 0.

Similarly, the conditional probability in 2D-plane, 𝑞"|$, for mapped samples 𝑦$ and 𝑦" (where 𝑦 ∈ ℝ2),
can be given as

 𝑞"|$ =
'()	(, =.,=/

0
/23>.

0)

'()	(, =.,=5
0/23>.

0)56.
	 (S5.2)

The variance is set to 1/ 2, therefore, 2𝜎=$2 = 1.

If the conditional probabilities, 𝑝"|$ and 𝑞"|$, are equal, then it means sample points, 𝑦$ and 𝑦", correctly
model the similarity between higher dimensional samples, 𝑥$ and 𝑥". Therefore, the aim is to model 𝑞"|$
as close as of 𝑝"|$. This is done by minimizing Kullback-Leibler divergence with respect to 𝑦$, using a
gradient descent method as

 𝐶 = 𝐾𝐿(𝑃$||𝑄$)$ = 𝑝"|$ log

I/|.
J/|."$ (S5.3)

where C is the cost function, KL is the Kullback-Leibler divergence function, 𝑃$ is the conditional
probability distribution over all samples given 𝑥$, and 𝑄$ is the conditional probability distribution over
all mapped samples given 𝑦$.

As a consequence of this optimization, mapped samples in the lower-dimensional space can be found
which similitudes samples between the higher-dimensional space.

Kernel PCA
Kernel PCA is beneficial for visualization, novelty detection and image de-noising. It is an extension of
the PCA technique for dimensionality reduction by incorporating kernel functions. These kernel functions
help to compute the principal components in much higher dimensional spaces. However, the
transformation to these higher dimensional spaces does not explicitly occur.

In kernel PCA, projection function 𝜙 is used to transform samples 𝑥 ∈ ℝ9 to a feature space. This feature
space could be in infinite dimensional space. However, instead of explicitly computing this feature space,
kernel trick is used to obtain samples 𝑦 ∈ ℝL (where ℎ < 𝑑) in a parsimonious data space.

Assuming a projected dataset with 𝑁 samples 𝜙(𝑥Q), 𝜙(𝑥2), … , 𝜙(𝑥T) are centered, and, therefore, its
mean is zero. The covariance matrix can be obtained using as

 𝛴 = Q

T
𝜙 𝑥$ 𝜙 𝑥$ VT

$WQ = 𝐸[𝜙 𝑥 𝜙 𝑥 V] (S5.4)

where 𝐸[̇] is an expectation function, and 𝜙(𝑥) is a sample from this dataset. If the data matrix is denoted
by 𝛷 then 𝛷 = [𝜙 𝑥Q , 𝜙 𝑥2 , … , 𝜙 𝑥T], which will allow equation (S5.4) to write in a matrix form as

 𝛴 = Q

T
𝛷𝛷V (S5.5)

Eigenvalue decomposition (EVD) of covariance matrix 𝛴 will give

 𝛴𝑣$ = 𝜆$𝑣$, for 𝑖 = 1,2, … , 𝑑 (S5.6)

Since 𝑣$ can be represented as a linear combination of 𝜙 𝑥Q , 𝜙 𝑥2 , … , 𝜙(𝑥T), we can write 𝑣$ = 𝛷𝑢$,
where 𝑢$ is a N-dimensional column vector. Using this equality and from equation (S5.5), we can rewrite
equation (S5.6) as

 Q

T
𝛷𝛷V𝛷𝑢$ = 𝜆$𝛷𝑢$

Multiplying LHS by 𝛷V, would give,

 Q

T
𝛷V𝛷𝛷V𝛷𝑢$ = 𝜆$𝛷V𝛷𝑢$ (S5.7)

It is easy to eliminate the term 𝛷V𝛷 from both the sides in equation (S5.7). Also if we define kernel 𝐾 =
𝛷V𝛷, then

 Q

T
𝐾𝑢$ = 𝜆$𝑢$ (S5.8)

that is, 𝑢$, is the eigenvector of 𝐾 (an 𝑁×𝑁 matrix) corresponding to eigenvalue 𝜆$. In order for
normalization,

 1 = 𝑣$V𝑣$ = 𝑢$V𝛷V𝛷𝑢$ = 𝑢$V𝐾𝑢$ = 𝑁𝜆$𝑢$V𝑢$

Thereafter, dimensionality reduction can be applied as

 𝑌$ = 𝑣$V𝛷 = 𝑢$V𝛷V𝛷 = 𝑢$V𝐾 (S5.9)

So far, we have assumed that the projected data 𝜙(𝑥) has a zero mean. But in practice, this is not true.
Therefore, projected data after centralizing, denoted 𝜙(𝑥), will give kernel 𝐾 as

 𝐾 = 𝐾 − 1T𝐾 − 𝐾1T + 1T𝐾1T (S5.10)

where 1T is an 𝑁×𝑁 matrix for which every element takes the value of 1/𝑁.

There could be a variety of kernel functions. For e.g. linear kernel between two samples, 𝑥 and 𝑥′, could
be 𝑘 𝑥, 𝑥g = 𝑥V𝑥′, or Gaussian kernel could be 𝑘 𝑥, 𝑥g = exp	(− 𝑥 − 𝑥g

2
/𝜌).

Reference
L. Maaten and G. Hinton, "Visualizing High-Dimensional Data using t-SNE," Journal of Machine
Learning Research, vol. 9, pp. 2579-2605, 2008.

B. Schölkopf, A. Smola, K-R. Müller, "Nonlinear Component Analysis as a Kernel Eigenvalue
Problem". Neural Computation, vol. 10, no. 5, pp. 1299–1319, 1998.

G.E. Hinton and S.T. Roweis, “Stochastic Neighbor Embedding. In Advances in Neural Information
Processing Systems”, vol. 15, pp. 833–840, Cambridge, MA, USA, 2002. The MIT Press.

Supplementary	File	6	

Description	of	DeepInsight	Pipeline	
	

An overview of the DeepInsight pipeline is depicted in Figure 1b (main manuscript). Here we describe the
details of the pipeline. A dataset was subdivided into 3 parts, namely the training set, validation set and test
set. The training set is employed to find the location of attributes or features in a 2D plane. Let a training
set consisting of 𝑛 samples and 𝑑 attributes be defined as 𝜒 = {𝑥', 𝑥), … , 𝑥+}. The attributes of 𝜒 can be
represented as 𝐺 = {𝑔', 𝑔), … 𝑔/} where 𝑔 is a feature vector with 𝑛 entries. This set 𝐺 is processed through
t-SNE or kernel PCA to get 2D coordinates { 𝑎', 𝑏' , 𝑎), 𝑏) , … , 𝑎/, 𝑏/ }. The coordinates (𝑎3, 𝑏3) define
the location of 𝑔3, where 𝑗 = 1,2, … , 𝑑.

Next, the convex hull algorithm is applied to find the minimum box covering all the points. Since this box
is not necessarily in the horizontal or vertical direction (as required by the CNN architect), we perform
rotation. For rotation, gradient of two corner coordinates of a rectangle (obtained by the convex hull
algorithm) is considered. If the coordinates are defined as (𝑥8', 𝑦8') and (𝑥8), 𝑦8)) then gradient 𝐺𝑟 is
defined as (See Figure S6.1)

𝐺𝑟 = ;<=>;<?

@<=>@<?
 (S6.1)

Figure	S6.1	Plot	showing	the	smallest	rectangle	containing	all	the	data	points.	The	two	corner	points	used	to	compute	gradient	

are	shown	as	C1	and	C2	

This will enable to compute the rotation angle 𝜃 defined as 𝜃 = tan>'(𝐺𝑟). This will provide the rotation
matrix as

𝑅 = cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃 (S6.2)

This rotation matrix 𝑅 is multiplied with the training set 𝜒 to provide horizontal/vertical image frame
(shown as red points in Figure 1b of the manuscript). The horizontal and vertical lengths of this frame are
given as

𝐴8 = |𝑥/) − 𝑥/'|
𝐵8 = |𝑦/N − 𝑦/)|

Where 𝑥/) and 𝑥/' are the x-axis coordinates of the image frame in the horizontal direction, and 𝑦8N and
𝑦8) are the y-axis coordinates in the vertical direction (see Figure S6.2).

Figure	S6.2	Plot	showing	the	rotated	data	points	and	the	smallest	bounding	rectangle.	The	corners	of	this	rotated	rectangle	are	

marked	as	d1,	d2,	d3,	d4.	These	points	are	used	to	compute	the	width	Ac	and	height	Bc.	

It is required to convert the Cartesian coordinates to pixel forms for processing. This was done by
determining the minimum distance between the two closest points 𝑑OP+. The pixel coordinates can therefore
be given as

𝐴Q = 𝑐𝑒𝑖𝑙(𝐴8×

WXY8PZP[+
/\]^

) (S6.3)

Where 𝑐𝑒𝑖𝑙() is the ceiling value of the product, and precision will define the resolution. In a similar manner
𝐵Q can be found as

𝐵Q = 𝑐𝑒𝑖𝑙(𝐵8×

QXY8PZP[+
/\]^

) (S6.4)

These 𝐴Q and 𝐵Q values will help to convert Cartesian coordinates to pixel coordinates as

𝑥Q = 𝑟𝑜𝑢𝑛𝑑 1 + @<>@bcd ×ef

@\gh>@\]^
 (S6.5)

𝑦Q = 𝑟𝑜𝑢𝑛𝑑 1 − ;<>;bcd ×if
;\gh>;\]^

 (S6.6)

Where (𝑥8, 𝑦8) are x-axis and y-axis coordinates in the Cartesian plane and (𝑥Q, 𝑦Q) are coordinates in the
pixel frame.

