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Abstract

Background: Post-translational modification (PTM), which is a biological process, tends to modify proteome that
leads to changes in normal cell biology and pathogenesis. In the recent times, there has been many reported PTMs.
Out of the many modifications, phosphoglycerylation has become particularly the subject of interest. The
experimental procedure for identification of phosphoglycerylated residues continues to be an expensive, inefficient
and time-consuming effort, even with a large number of proteins that are sequenced in the post-genomic period.
Computational methods are therefore being anticipated in order to effectively predict phosphoglycerylated lysines.
Even though there are predictors available, the ability to detect phosphoglycerylated lysine residues still remains
inadequate.

Results: We have introduced a new predictor in this paper named EvolStruct-Phogly that uses structural and
evolutionary information relating to amino acids to predict phosphoglycerylated lysine residues. Benchmarked data
is employed containing experimentally identified phosphoglycerylated and non-phosphoglycerylated lysines. We
have then extracted the three structural information which are accessible surface area of amino acids, backbone
torsion angles, amino acid’s local structure conformations and profile bigrams of position-specific scoring matrices.

Conclusion: EvolStruct-Phogly showed a noteworthy improvement in regards to the performance when compared
with the previous predictors. The performance metrics obtained are as follows: sensitivity 0.7744, specificity 0.8533,
precision 0.7368, accuracy 0.8275, and Mathews correlation coefficient of 0.6242. The software package and data of
this work can be obtained from https://github.com/abelavit/EvolStruct-Phogly or www.alok-ai-lab.com
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Background
Post-translational modification (PTM) signifies the bio-
logical process responsible for the enzymatic change in
proteins after its translation in the ribosome. There has
been a stir of interest in these types of modifications
across numerous organisms due to the progressive ef-
forts of high-throughput proteomics in areas of
site-specific PTM and protein altering enzymes [1]. Pro-
teins are composed of 20 amino acids found in the gen-
etic code. Lysine is one of the 20 amino acids which
have been observed to be the most highly modified [2,
3]. According to the findings [4], lysine residues easily
undergo covalent modifications and some of the modifi-
cations that have been detected are pupyl [5], propionyl
[6], methyl [7], crotonyl [8], succinyl [9], glycosyl [10]
and acetyl [11]. The modification of amino acids, as well
as regulatory enzymes, have resulted in numerous hu-
man diseases including neurodegenerative disorders,
rheumatic arthritis, coeliac disease, essential hyperten-
sion and high blood pressure, multiple sclerosis and cor-
onary heart diseases.
This non-enzymatic phosphoglycerylation modification

is found in human cells as well as in mouse liver [12].
Phosphoglycerylation is highly correlated to cardiovascu-
lar diseases due to it being linked to glycolytic process and
glucose metabolism [13]. This reversible biochemical
modification occurs as a result of the reaction between a
primary glycolytic intermediate (1,3-BPG) and a lysine
residue forming the 3-phosphoglyceryl-lysine (pgK) [14].
The 3-phosphoglyceryl-lysine hinders glycolytic enzymes
and also accumulates on those that have their cells ex-
posed to high glucose hence creating a potential feedback
process causing the buildup and altering of glycolytic in-
termediates to different biosynthetic pathways. It is very
crucial to understand the regularity roles and the selectiv-
ity mechanism of this PTM for the diagnosis and treat-
ment of the affected individuals.
There has been an increasing interest in computational

methods for predicting PTM sites in protein sequences
[15–25]. It is because the experimental procedures for iden-
tifying PTM sites based in laboratories have demonstrated
to be time-consuming, inefficient and a costly endeavor
[26–28]. The computational technique of predicting phos-
phoglycerylated and non-phosphoglycerylated sites has
proven itself to be an important tool for the identification
process of such sites.
To address the computational technique of identifying

the phosphoglycerylated lysine residues, some studies
have been done previously. The Phogly-PseAAC is a
KNN-based predictor which utilizes the pseudo amino
acid properties with the center nearest neighbor algo-
rithm [29]. CKSAAP_PhoglySite is another predictor
which uses the method of Chou’s PseAAC and the
k-spaced amino acid pair compositions (CKSAAP) [12].

The predictor employs penalty factor to treat the class
imbalance and utilizes support vector machine to carry
out prediction. It is intuitive to point out that the
CKSAAP feature encoding scheme results in a very high
dimensional feature vectors (2205 dimensional). Further-
more, it has been pointed out in a recent critical review
[30] that this feature generation scheme does not per-
form well, hence it was not considered as an approach
to take for the prediction of phosphoglycerylated lysine
residues. The third method is called PhoglyPred [31].
This method uses sequence information obtained from
the increment of k-mer diversity, the position-specific
propensity of k-space dipeptide and finally selects physi-
cochemical features of the modified k-space amino acid
pair compositions. This method employs weight assign-
ment on training data to solve the issue of class imbal-
ance and then predicts the sites based on SVM classifier.
Despite the availability of a number of predictors, the

capability in terms of performance is still very much of a
concern. In this respect, we introduce an original pre-
dictor called EvolStruct-Phogly which employs a set of fea-
tures comprising structural properties and evolutionary
information for distinguishing phosphoglycerylated and
non-phosphoglycerylated lysine residues. We have used
91 proteins containing phosphoglycerylated residues
which have been experimentally identified and incorpo-
rated features such as the accessible surface area (ASA),
probability of amino acid’s contribution to local structure
conformations (coil, strand, helix), backbone torsion an-
gles and profile bigram from the position-specific scoring
matrix (PSSM) for all protein sequences. The residue win-
dow used in this work are different for the two property
sets. The window size of ±3 proved to be significant for
the structural properties while for the evolutionary infor-
mation the window size of ±20. The stated window sizes
provided the highest performance measures when seg-
ment sizes between 5 and 45 were assessed for each of the
two characteristics (structural and evolutionary informa-
tion). The feature vector, therefore, consisted of 3 up-
stream and 3 downstream and 20 upstream and 20
downstream amino acid residues for the two different
characteristics corresponding to phosphoglycerylated and
non-phosphoglycerylated sites. In the benchmark dataset,
there existed a high class imbalance between
non-phosphoglycerylated and phosphoglycerylated lysine
residues hence we adopted the k-nearest neighbors strat-
egy to carry out the cleaning action [26, 32, 33].
EvolStruct-Phogly showed a substantial improvement in
the detection of phosphoglycerylated and
non-phosphoglycerylated residues when compared with
the existing predictors [12, 29] with sensitivity, specificity,
precision, accuracy, and Mathews correlation coefficient
equal to 0.7744, 0.8533, 0.7368, 0.8275 and 0.6242,
respectively.
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Methods
A machine learning-based technique called
EvolStruct-Phogly is proposed in this study for the predic-
tion of phosphoglycerylated and non-phosphoglycerylated
sites. This predictor considers a total of eight structural
properties which are the ASA, the backbone torsion angles,
and amino acid probability to local structure conformations
(helix, strand, coil) [33, 34] and PSSM of proteins together
with profile bigram [35] of amino acids for predicting phos-
phoglycerylated and non-phosphoglycerylated lysine resi-
dues. The following sections describes the benchmark
dataset used in this work and acquisition of the characteris-
tics of the segments consisting of the lysine residues.

Benchmark dataset
For this work, the benchmark dataset was obtained from
CPLM repository (http://cplm.biocuckoo.org). CPLM
stands for Compendium of Protein Lysine Modifications
and holds a number of other protein lysine modifica-
tions which have been experimentally determined. In
order to use the dataset, we removed those protein se-
quences which had ≥40% sequential similarities. The
consequent number of proteins attained was 91 and
each of the sequences contained one or more lysine resi-
dues. A total of 3360 lysine residues were found in these
protein sequences and out of which 3249 lysines were
non-phosphoglycerylated. The following sections de-
scribe the computation of the two characteristics of the
protein sequences used in this work.

The structural and evolutionary features
Structural features
The structural features attained in this work corre-
sponded to eight properties which are the secondary
structure, the ASA and the backbone torsion angles.
SPIDER2 toolbox [36] was used to achieve the men-
tioned properties. The SPIDER2 toolbox is compatible
for accomplishing good result in predicting the second-
ary structure [37, 38], the ASA [39, 40] and the back-
bone torsion angles [39, 41] in protein sequence. The
toolbox can successfully extract structural properties for
sequence-based binding sites of proteins [42, 43]. Struc-
tural properties are further elaborated in the subsections
below. For simplicity, we call the below feature matrix as
SPpre.

Accessible surface area ASA is the approximation of
an amino acid’s accessible area to a solvent [44, 45]. It
reveals essential information about the protein structure
of individual amino acids. The resulting ASA value of in-
dividual amino acids was obtained by executing
SPIDER2 on every protein sequence. It can be pointed
out here that SPIDER2 predicts upon the primary

sequence hence the prediction is entirely based on the
sequence information.

Secondary structure The 3D structure of proteins is de-
fined by the secondary structure. Predicted secondary
structure gives a distinct outcome contributing to either
coil, strand or helix, which are the protein local struc-
tures. SPIDER2 was used again to evaluate the occur-
rence of amino acid conformations to the local
structures; coil (pc), strand (pe) and helix (ph). The re-
sult of SPIDER2 is an L × 3 matrix, where L denotes the
protein length while the columns denote the conform-
ation probability to the three secondary structures.

Local backbone angles Local backbone angles, also
known as torsion angles, relates the neighboring amino
acids. The torsion angles ϕ, and ψ, corresponding to a
local amino acid are a measure representing its inter-
action along the protein backbone [46, 47]. For each
amino acid, the angle ϕi specifies the dihedral angle for
the Ni - Cαi bond while ψi is the angle spun about Cαi -
Ci bond. In the recent works, the inclusion of two new
angles has been focused which are based upon dihedral
angles θ, the angle between three Cα atoms Cαi-1 - Cαi -
Cαi + 1 and τ, the angle rotated about Cαi - Cαi + 1 bond,
have been considered [39]. Four different numerical vec-
tors ϕ, ψ, θ, and τ were achieved corresponding to each
amino acid after running the SPIDER2 toolbox. Torsion
angles complement ASA and secondary structure
through the provision of important continuous informa-
tion of amino acid’s local structure [41].

Evolutionary feature
The underlying insights of how the proteins evolved
based on its structural, functional and sequential similar-
ities with others [48] are captured by evolutionary infor-
mation. For each amino acid in the protein, PSSM
provides the probability of substitution with the 20
amino acids found in the genetic code. PSI-BLAST is a
toolbox [49] that aligns a given protein sequence to
similar sequences located in the protein data bank [50]
was used to obtain the PSSM. The PSSM of proteins in
our benchmark dataset was obtained by running the
PSI-BLAST tool. Two matrices are outputted by
PSI-BLAST of the dimension L × 20 where L corre-
sponds to the protein length and columns to the 20
amino acids found in the genetic code. One matrix rep-
resents the log odds and the second matrix the amino
acid linear probabilities. The linear probabilities were
employed for the purpose of this work. PSSM was pro-
duced on non-redundant proteins by PSI-BLAST in the
protein data bank for three iterations using E value (cut-
off value) of 0.001.
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Formulation of the amino acid characteristics
In this section, we will look into the formulation of the
structural properties (ASA, pc, pe, ph, ϕ, ψ, θ, τ) and the
evolutionary information for each lysine residues. We
have utilized 3 upstream and 3 downstream amino acids
for structural features and 20 upstream and 20 down-
stream amino acids for evolutionary feature surrounding
the lysine residue K as shown in Fig. 1a. In the circum-
stances where the lysine residues had missing amino
acids on the upstream or downstream, the technique of
mirror effect [33] was employed to fill in the missing
amino acids as depicted in Fig. 1b.
A segment P comprising 20 upstream and 20 down-

stream amino acids including the lysine residue K which
falls in the middle can be written as:

P ¼ A−20;…;A−2;A−1;K ;A1;A2;…;A20f g ð1Þ

The downstream amino acids are referred by An where
1 ≤ n ≤ 20 and upstream amino acids by A-n where 1 ≤
n ≤ 20. It can be realized from eq. (1) that a segment is

made up of 41 amino acids (20 upstream amino acids,
20 downstream amino acids and the lysine K). The seg-
ment P represents each lysine and a label of 1 indicates
phosphoglycerylation site and a 0 indicates the
non-phosphoglycerylated site. These labels are experi-
mentally confirmed valuations.
Furthermore, after the acquisition of the sub-matrices

PSSM and SPpre, PSSM was changed into frequency vector
of bigrams (PSSM + bigram) and after which the computed
features were used to describe each lysine site. Resulting di-
mensions of the matrices were 7 × 8 (SPpre) and 20 × 20
(PSSM + bigram). The segment P corresponding to each ly-
sine residue was therefore composed of a 456 dimensional
vector. All in all, the 456 dimensional feature vector cap-
tured the structural properties and evolutionary informa-
tion for the segment P representing each lysine residue.

Profile bigrams
The technique of profile bigrams has presented promis-
ing outcome when dealing with discriminatory informa-
tion [35, 51–53]. The matrix M represents PSSM for

Fig. 1 Schematic representation of the arrangement of lysine residue amino acid neighbors. a Lysine residue possessing sufficient neighboring
amino acids. b Exemplar lysine residue having insufficient amino acids. The application of left and right mirroring for insufficient upstream and
downstream amino acids respectively
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each protein sequences. Every element in the matrix M de-
noted by mij is the transitional probability of amino acid j at
the i-th position of the protein sequence. Segment P was
represented by a feature matrix of size 41 × 20 where 20 in-
dicates amino acids of the genetic code from which PSSM
has calculated the substitution probabilities of each amino
acid. Profile bigram [35] of the matrix M is calculated by

Bp;q ¼
X40

k¼1
mk;pmkþ1;q where 1≤p≤20 and 1≤q≤20

ð2Þ

The matrix B comprises of elements Bp, q (for p = 1, 2,
3, …, 20 and q = 1, 2, 3, …, 20) representing PSSM +
bigram is a 20 × 20 matrix. The matrix B is then trans-
formed into 400 transitional probabilities as shown by
Eq. (3). The feature vector contains 400 transitional
probabilities corresponding to the evolutionary informa-
tion of each lysine residue.

F ¼ ½B1;1;B1;2;…;B1;20;B2;1;
B2;2;…;B2;20;B20;1;B20;2;…;B20;20�

ð3Þ

Support vector machine
Support vector machine is a collection of learning algo-
rithms categorized under the supervised learning model in
the area of machine learning. The model is useful for ana-
lyzing data for classification and regression applications.
Each training data point resembles a point in the
n-dimensional space where n is the number of features of
the sample. The way the SVM algorithm works is by find-
ing a hyper-plane which best separates the two different
classes. The classes are not always linearly separable so
the non-linear kernels are employed to deal with such
cases. The kernels are used to map nonlinear input space
to a higher dimensional feature space in which the classes
can be linearly separated. For this work, LibSVM package
was utilized on the Matlab platform. Furthermore, the
SVM type used was C-SVC and kernel employed was
polynomial with the cost value of 1 and gamma value of 1.

Results and discussion
Getting the performance assessment of any predictor
intended for predicting phosphoglycerylation sites is a
very important component. For the purpose of this
work, we have used five different statistical metrics to
evaluate the performance of EvolStruct-Phogly. The met-
rics are sensitivity, specificity, precision, accuracy and
Mathews correlation coefficient [12, 26, 29, 33, 54–58].
The following sections discuss the evaluation metrics
used, the validation scheme, the procedure for treating
class imbalance and finally the comparison of
EvolStruct-Phogly with existing methods.

Evaluation metrics
The first metric sensitivity, measures the ability of the
predictor to correctly classify phosphoglycerylation ly-
sine residues. The range of values of the metric is from
0 to 1 where a 1 indicates a very effective predictor and
a value of 0 shows that the predictor is incompetent. In
other words, a higher value of sensitivity metric indicates
the better the predictor is at distinguishing phosphogly-
cerylation sites.
Specificity is the second metric which is the measure of a

predictor to classify correctly the non-phosphoglycerylation
sites. This metric also ranges from 0 to 1 where a higher
value signifies the better the predictor is at distinguishing
non-phosphoglycerylation sites.
The third metric is precision and it indicates the por-

tion of the entire predicted phosphoglycerylated residues
by the classifier to be correctly classified. The metric
provides a measure of the predictor’s ability not to label
a site as phosphoglycerylated if the site is actually
non-phosphoglycerylated. The metric values range from
0 to 1 where 1 is the most desired score while 0 is not.
The fourth metric is accuracy and it captures the ability of

a predictor to distinguish phosphoglycerylated sites from
non-phosphoglycerylated ones. It is calculated by dividing
the sum of predicted phosphoglycerylated and non- phos-
phoglycerylated sites which reflect the true labels with the
total number of sites predicted. The metric values also range
from 0 to 1 where 1 is the most desired score while 0 is not.
The final metric is known as Mathews correlation co-

efficient [59] and is used for measuring the quality of a
two-class classifier. It is considered to be a balanced
measure since it can be utilized even when the two clas-
ses are of very different sizes. This metric ranges be-
tween − 1 and 1. A score of 1 indicates a very competent
predictor, 0 as an average predictor while a − 1 as an im-
practical predictor.
The five evaluation metrics can be summarized as

Sensitivity ¼ TP
TP þ FN

ð4Þ

Specificity ¼ TN
TN þ FP

ð5Þ

Precision ¼ TP
TP þ FP

ð6Þ

Accuracy ¼ TN þ TP
FN þ FP þ TN þ TP

ð7Þ

Mathews correlation coefficient

¼ TN � TPð Þ− FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð8Þ
where TP stands for true positives corresponding to the
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phosphoglycerylated lysines correctly predicted. TN
stands for true negative samples which corresponds to
the number of non-phosphoglycerylated residues cor-
rectly predicted. FN denotes false negatives representing
the samples which were phosphoglycerylated but were
predicted as non-phosphoglycerylated sites. The FP is a
number of false positive samples which is the number of
non-phosphoglycerylated sites incorrectly classified by
the predictor.
It is preferred that the best predictor must achieve

highest scores in all the mentioned evaluation metrics.
Nevertheless, the performance of the predictor on the
sensitivity measure should be higher than the existing
methods.

Validation scheme
The evaluation metrics described in the previous section
were obtained through cross-validation method so that
the performance of the predictor can be deduced. The
three commonly used cross-validation methods to deter-
mine predictor’s effectiveness in statistical predictions
are independent dataset test, n-fold cross-validation test,
and jackknife test [60, 61]. Even though the jackknife is
the least arbitrary of the three methods yielding the dis-
tinct result for a given dataset [62], the 10-fold
cross-validation method was adopted in this work to re-
duce the computational time. The steps in which the
10-fold cross-validation method was performed is
highlighted below:

1. Split the dataset into the folds of 10 where each
fold is of equal size

2. Carry out training on the 9 folds and test on the
remaining fold

3. Fine-tune the parameters of the predictor on the
training sets

4. Calculate the five evaluation metrics on the test
fold

5. Reiterate the steps 2 to 4 for nine more epochs and
calculate evaluation metric averages.

The result for the 10-fold cross-validation carried out
in this work is presented under the section where the
comparison with existing methods is shown.

Data imbalance treatment
In the obtained benchmark dataset, it was discovered
that the number of phosphoglycerylated lysine residues
was much less compared to the number of
non-phosphoglycerylated lysine residues. The number of
positive samples (phosphoglycerylated sites) was 111
while the number of negative samples (non-phosphogly-
cerylated sites) was 3249. As a result, the ratio obtained
between positive and negative sets was 1:29 which could

strongly bias the classification process. For this reason,
dealing with class imbalance is a very crucial action in
classification problems. To carry out the imbalance
treatment, we utilized the commonly used scheme called
the k-nearest neighbor strategy [26, 28, 32, 55, 63] where
we removed a negative instance when one of its k neigh-
bors was a positive instance. We started out the process
by finding the initial value of k by dividing the number
of samples in the negative set with the number of sam-
ples in the positive set. The resulting value of k obtained
was 29. We then calculated the Euclidean distance of all
the samples from every negative sample and removed
the negative sample when one of its neighbors was posi-
tive. With the k value of 29, it was found that the class
imbalanced remained. The threshold was therefore in-
creased further until the negative set was about twice
the size of the positive set. A k value of 79 resulted in
226 samples in the negative set and 111 samples in the
positive set. It is to be noted that the number of samples
in the positive set was not modified in the treatment
process. The resulting samples were then employed to
deduce the performance of the new predictor based on
the 10-fold cross-validation method.

Comparison of EvolStruct-Phogly with the existing
methods
The two recently developed techniques for predicting
phosphoglycerylated sites are the Phogly-PseAAC [29]
predictor and the CKSAAP_PhoglySite method [12]. We
uploaded our benchmark dataset in FASTA format to
the webserver of the Phogly-PseAAC predictor to obtain
their classification results. It is worthy to point out that
the webserver could have been trained using some of the
protein sequences which are being used for the perform-
ance evaluation. For the second method, the Matlab
software was provided for predicting the phosphogly-
cerylated sites in protein sequences. In order to carry
out the comparison with the CKSAAP_PhoglySite pre-
dictor, we built the feature extraction of the lysine resi-
dues using their technique and performed the same
10-fold cross-validation on the classifier similar to ours.
For both of these methods, evaluation was carried out
using the same validation set which was put aside when
10-fold cross-validation was performed on our predictor
EvolStruct-Phogly. Furthermore, we computed the area
under the curve (AUC) for 10-fold cross-validation of
our predictor and the method of CKSAAP_PhoglySite.
AUC could not be calculated for the Phogly-PseAAC
predictor since the training samples used in their
method was not clear.
Table 1 shows the comparison of EvolStruct-Phogly,

Phogly-PseAAC predictor [29] and the CKSAAP_Pho-
glySite method [12]. It can be seen that
EvolStruct-Phogly outperforms the other two methods
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in the metrics which are sensitivity, precision, accuracy,
and MCC (Mathews correlation coefficient). The four met-
rics improved significantly by 11.2, 29.3, 15.3 and 51.6%, re-
spectively, with respect to the highest value of each metric.
This goes on to say that there is a considerable improve-
ment over the previous methods. It can be noted that even
though the specificity of the CKSAAP_PhoglySite method
[12] remained high (0.9327), its sensitivity was quite low
(0.1724), leaving almost 83% of phosphoglycerylation resi-
dues undetected. Moreover, the AUC of EvolStruct-Phogly
and CKSAAP_PhoglySite method [12] were computed to
be 0.8144 and 0.5524, respectively. Predictor having a
higher value of AUC is always favorable.
It can be seen from the results that EvolStruct-Phogly

has delivered a very promising performance. The prom-
ising performance can be credited to the usage of im-
portant structural properties and evolutionary
information concealed in the protein sequences. The
combination of structural properties such as the ASA of
amino acid, local structure conformations, backbone tor-
sion angles and the evolutionary information captured
by PSSM of each amino acid which was translated to
bigram occurrences appear to be vibrant characteristics
in terms of detecting the phosphoglycerylated residues.
The use of structural properties and evolutionary infor-
mation has propitiated other areas of research like sub-
cellular localization of proteins [64], succinylation
prediction [33], MoRF detection [65, 66], and protein
fold recognition [67].
Furthermore, we calculated the absolute of Pearson

correlation between the structural properties, coil (pc)
and strand (pe), for the positive samples, negative sam-
ples, and combined positive and negative samples. The
correlation coefficient obtained were 0.0979, 0.0819 and
0.0234, respectively. It can be seen that there is a higher
correlation in the positive and negative sets for the
structural properties coil and strand when compared to
that of the combined set.
A user-friendly web-server which is publically ac-

cessible, as indicated in [68] and also in a series of
latest publications (see, e.g., [65, 69–74]), represents
the steps ahead for developing prediction methods
and computational tools which are more practical
and useful. We therefore, in our future works, shall

make efforts to provide a web-server for the predic-
tion method presented in this paper.

Conclusion
To sum up, a new predictor called EvolStruct-Phogly is
presented in this paper which employs a combination of
structural properties and evolutionary information for
predicting phosphoglycerylated lysine residues. The pro-
file bigram was computed for the evolutionary informa-
tion of proteins and was integrated with structural
properties to form a single vector to carry out the classi-
fication. There was a high class imbalance in the bench-
mark dataset which was treated using the k-nearest
neighbors technique and was then supplied to the SVM
classifier for phosphoglycerylation site prediction. With
our method, the sensitivity, precision, accuracy, and
MCC significantly improved when compared to the pre-
vious predictors.
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