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Abstract

Background: Glycation is a one of the post-translational modifications (PTM) where sugar molecules and residues
in protein sequences are covalently bonded. It has become one of the clinically important PTM in recent times
attributed to many chronic and age related complications. Being a non-enzymatic reaction, it is a great challenge
when it comes to its prediction due to the lack of significant bias in the sequence motifs.

Results: We developed a classifier, GlyStruct based on support vector machine, to predict glycated and non-glycated
lysine residues using structural properties of amino acid residues. The features used were secondary structure, accessible
surface area and the local backbone torsion angles. For this work, a benchmark dataset was extracted containing 235
glycated and 303 non-glycated lysine residues. GlyStruct demonstrated improved performance of approximately 10% in
comparison to benchmark method of Gly-PseAAC. The performance for GlyStruct on the metrics, sensitivity, specificity,
accuracy and Mathew’s correlation coefficient were 0.7013, 0.7989, 0.7562, and 0.5065, respectively for 10-fold cross-
validation.

Conclusion: Glycation has emerged to be one of the clinically important PTM of proteins in recent times. Therefore, the
development of computational tools become necessary to predict glycation, which could help medical professionals
administer drugs and manage patients more effectively. The proposed predictor manages to classify glycated and non-
glycated lysine residues with promising results consistently on various cross-validation schemes and outperforms other
state of the art methods.

Keywords: Post-translational modification, Lysine glycation, Protein sequences, Amino acids, Prediction, Support vector
machine

Background
Post-translational modifications (PTM) of protein occur
when there is a covalent alteration to protein backbones
and side chains that increase proteome complexities.
PTMs are generally mediated by enzymatic activity that
occur at selected sites along amino acid side chains after
its translation by ribosome is complete [1, 2]. These
modifications provide important insight into various cel-
lular functions and biological processes of proteins such

as cellular dynamics and elasticity [3, 4]. There are many
important PTMs with significant biological impact such
as acetylation, carbonylation, glycosylation, glycation,
methylation, nitrosylation, phosphorylation, sumoylation,
succinylation, and ubiquitylation to name a few [5–10].
Of lately, glycation has emerged to be of significant

clinical relevance attributed to a correlation with in-
creased blood glucose concentration [11, 12], and meta-
bolic morbidity detection [13]. This biochemistry
involves a complex multi-step site modification process
between reducing sugars and amino acid groups located
in lysine (K) and arginine (R) residues, or in the N-ter-
minal position to form Amadori adduct [14, 15]. The
Amadori adduct further reacts to form advanced
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glycation endproducts (AGEs). With aging, AGEs accu-
mulate and alters the tissue protein structure, function
and turnover. If untreated, AGEs can lead to chronic
complications of diabetes mellitus and neurodegenera-
tive changes such as Alzheimer’s disease and amyo-
trophic lateral sclerosis [16–24]. Moreover, correlations
have been established between levels of AGEs and dia-
betes with its related complications [7, 20, 24–26] in
aging Homo sapiens. Glycation being a non-enzymatic
reaction presents a great challenge in detection due to
the motifs having greater levels of entropy compared to
other PTMs. Conversely, enzymatic reaction is charac-
terized by a more specific reaction and often has more
biased sequence motif [27, 28].
In clinical methods, PTMs are identified in wet labs by ob-

serving this modification using methods such as mass spec-
trometry and immunofluorescence, and stored in online
databanks such as dbPTM, CPLM and PLMD [1, 29–31].
Despite PTM being an important area for morbidity detec-
tion and genetics, clinical approaches face great limitation
due to the plethora of protein sequences in existence in data
repositories [32], high costs, and time-consuming process of
biochemical experimentations in wet-labs [3]. Hence, data
scientists have been exhorted to actively pursue the develop-
ment of computational tools to provide cost-effective solu-
tions [3, 33–35]. This has led to an evolution of data mining
in medicine, especially in the area of proteomics [36–38]. A
concerted international effort has seen large dataset being ac-
tively developed to study and predict site-specific protein
modification [31, 39].
While clinical importance of glycation is obvious, on

the contrary however, few predictors have been proposed
for this type of PTM. The earliest predictor, GlyNN [27]
was developed using artificial neural network involving a
dataset of only 89 glycated and 126 non-glycated lysines
residues from a set of 20 proteins. PreGly predictor by
Liu et al. [40] built on the same dataset as [27] used
composition of -spaced amino acid pairs (CKSAAP)
for extracting features from protein sequences. GlyNN
achieved the sensitivity, specificity, accuracy and Math-
ew’s correlation constant (MCC) of 0.7865, 0.8015, 0.795
and 0.58, respectively, while PreGly achieved for the
same metrics, 0.7106, 0.9585, 0.8551 and 0.7 respect-
ively. Gly-PseAAC developed by Xu et al. [28] used the
recently updated dataset from CPLM databank consist-
ing 223 glycated and 446 non-glycated residues. They
have considered features from position-specific amino
acid propensity (PSAAP) scheme. More recently, Zhao
et al. proposed Glypre predictor [41] using a combin-
ation of features like position conservation, amino acid
index and CKSAAP. In addition, Islam et al. [42] investi-
gated an even larger set of features that included pro-
pensity based features, amino acid composition,
physicochemical features and secondary structure motifs

for their predictor iProtGly-SS. The results obtained by
[28] on the on the recent dataset is low with sensitivity
at 0.5748 and specificity at 0.7430. Furthermore, Glypre
and iProtGly-SS reported performance on the two datasets
from Johansen [27] and Xu et al. [28] but applied various
filtering techniques to overcome the problem of data im-
balance between negative and positive instances. Glypre
excels with dataset from [27], but it achieved sensitivity at
only 0.5747 while demonstrating high specificity of 0.9078
on the larger dataset from [28]. On the same new dataset,
iProtGly-SS predictor, manages higher sensitivity of
0.9238. However, their specificity reached maximum of
0.6009. All comparison are made for 10-fold validations
since they are generally higher. For clinical use, however,
glycation needs a more robust prediction of both instances
of glycated and non-glycated lysines. Therefore, there is
an opportunity to explore alternative methods for more
robustness and any slight improvement in prediction pro-
vides a valuable resource to the community [43].
To predict glycation sites with high accuracy and to

address the shortcoming of those previous studies, we
introduce a new machine learning method called Gly-
Struct to predict glycation of lysines. To develop Gly-
Struct predictor, we incorporated structural information
extracted from the predicted local structure of protein
sequences as our input feature set and employed Sup-
port Vector Machine (SVM) as a classifier [44, 45]. Our
achieved results demonstrate that GlyStruct is capable of
predicting both, the glycated and non-glycated lysine
residues better than previously proposed method found
in the literature for this task. Using GlyStruct, we
achieved 0.7013, 0.7989, 0.7562, and 0.5065 for sensitiv-
ity, specificity, accuracy and Mathew’s correlation coeffi-
cient, respectively for the 10-fold cross validation.

Methods and materials
To build our predictor model, benchmark dataset was cu-
rated from the online databanks. Following the standard
methodology in bioinformatics [3], the dataset was then
formulated to make it suitable for training classifiers and
an appropriate cross-validation scheme was used to ob-
jectively evaluate the accuracy of the predictor.
This section describes the proposed method and

benchmark dataset used in this study.

Benchmark dataset
The dataset for glycation was obtained from publically
available and widely used CPLM database [30] (available
http://cplm.biocuckoo.org/) that was curated from com-
prehensive clinical and in vitro studies [43]. The bench-
mark dataset we retrieved was filtered for redundant
sequences with a threshold of 30% for pairwise sequence
identity. The final dataset consisted of 1753 lysine sites
in total found in 55 proteins. Among them, 235 lysines
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are glycated and 1518 are non-glycated sites. The pri-
mary sequences used to build GlyStruct are included in
supplement as the Additional file 1.

Feature extraction
The secondary structure features reveal intrinsic infor-
mation regarding the characteristics of a protein se-
quence. In this study, we considered three attributes that
formulate the local structure of protein namely, the sec-
ondary structure, local backbone torsion angles, and ac-
cessible surface area (ASA). The prediction of those
attributes was carried out using the SPIDER2 toolbox
[46]. The SPIDER2 toolbox demonstrated promising re-
sult predicting these attributes compared to other
methods found in the literature for predicting secondary
structure [47, 48], backbone angles [49, 50], and access-
ible surface area [46, 49, 51] of amino acids. Predicted
results using SPIDER2 has been used in different studies
and demonstrated promising results [52–54]. The fol-
lowing describes the features integrated in this work:
Accessible Surface Area (ASA) provides an estimate

surface area of a particular amino acid reachable by a
solvent situated in the protein’s three-dimensional con-
figuration [55, 56]. The predicted values of ASA for indi-
vidual amino acids hence provides essential information
of how it locally interacts with other amino acids to
build global protein structure.
Secondary structure provides insight into the local

three-dimensional structure within protein sequence
where each amino acid can be discriminated based on the
three defined local backbone folding patterns correspond-
ing to a polypeptide. These are helix (ph), strand (pe) and
coil (pc) motifs. Information from the secondary structure
can contribute constructively to the general
three-dimensional configuration of the polypeptide and
the affinity for PTM of lysine residues [54, 57]. Given a
protein sequence, SPIDER2 produces a L × 3 matrix con-
taining the predicted secondary structure, which we call
SSpre. L represents the length of a protein sequence and
columns represent the transitional probabilities of each
amino acid conforming to the three secondary structures.
Local Backbone angles refer to the torsion angles be-

tween neighbouring amino acids that provide backbone
conformations (local structure) of a polypeptide. They
complement the information provided by ASA and the
secondary structure predictions (SSpre) [50] of amino
acids. The predicted backbone torsion angles, ϕ, ψ, θ, τ,
represent the interaction of local amino acid along the
protein backbone [54, 58, 59] as shown in Fig. 1 [60]. Φ
and ψ demonstrate the torsion angles among the mole-
cules inside one single amino acid with respect the
neighboring molecules. On the other hand, θ and τ dem-
onstrates torsion angles between Alpha Carbons (Cα) in
neighboring amino acids [49]. In fact, θ determines

torsion angles between three neighboring Cα and Cαi − 1

−Cαi − Cαi + 1 while τ determines the torsion angles be-
tween two neighboring Cα and Cαi −Cαi + 1. While sec-
ondary structure provides the general elucidation
around sections of peptide, local backbone angles pro-
vide elaboration of structure within the locality of PTM
points, the latter being lysine residue in this case.

Feature vector construction
Protein sequences are of varying lengths and cannot be
used directly in classification. Classifiers require dataset
of fixed length [61] therefore we employed a widely used
method of truncating the protein sequence into fixed
length peptide segments [54, 57, 62–66] proposed by
Chou [67, 68].
We selected the peptide segment by sliding a window

of size δ amino acids on the primary sequence taking
the flanking upstream and downstream sequence of
amino acids on each side of lysine residue K, with a
flank of size σ as shown in Fig. 2. Segment window size
of δ = 13 consistently produced optimized results after
testing out all window sizes from δ = 3 to δ = 39. As a re-
sult, the flank size was determined as σ = 6.
If a lysine residue flank (either upstream or down-

stream) did not contain enough amino acids to create a
consistent flank size specified by σ, the void portion was
filled using mirror effect [54, 62, 69] (Fig. 3). The seg-
ment sequence SKi comprising lysine residue K with
flanking upstream and downstream amino acids Ai can
be expressed as follows:

SKi ¼ A−6;A−5;…;A−2;A−1;Ki;A1;A2;…;A5;A6f g
ð1Þ

where Aj (for 1 ≤ j ≤ 6) denotes downstream amino acids
of the lysine; A−j (for 1 ≤ j ≤ 6) the upstream amino acids
of the lysine; and Ki, the lysine residue itself at ith pos-
ition in the protein sequence. The size of SKi is 13 amino
acids that includes the lysine residue K and the 6 amino
acids on each side. The segment sequence SKi has a class
label y corresponding to its lysine residue, which can be
written as y = {0, 1}. For the case when SKi describes a

Fig. 1 Local backbone torsion angles of polypeptide showing
relevant bonds
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glycated lysine residue, the label is y = 1 and a non-
glycated lysine residue is represented by y = 0. In
addition, each amino acid Aj and A−j is designated by
the structural features Fi as expressed in Eq. 2.

Fi ¼ ASA;ϕ;ψ; θ; τ; ph; pe; pcf g ð2Þ

The features set Fi presented in Eq. (2) for each
amino acid is an 8-dimensional vector which is
concatenated with the features of the whole segment
(13 amino acid) producing a 104-dimensional vector.
The appropriate class label (y = 1 and y = 0) for each
instance of the lysine residue is considered for devel-
oping the classifier.

Classification engine
SVM works by establishing an optimal hyperplane be-
tween classes and extends to patterns that are not
linearly separable by using kernel functions. If the di-
mensionality of feature vectors is very high, then dimen-
sionality reduction techniques can be employed before
SVM application [70–79].
In SVM algorithm (Eq. 3), the margin between hyper-

planes needs to be minimized, which represent boundar-
ies between classes (of glycated and non-glycated
lysines). If the boundaries are non-linear, kernels func-
tions are used [80]. The kernel functions can be
non-linear such as radial basis function (RBF), polyno-
mial and sigmoid. In this work, we designed our Gly-
Struct predictor using SVM with a polynomial kernel

Fig. 2 Illustration of selecting window size to obtain feature vector for training and testing classifier

Fig. 3 mirroring used to obtain consistent feature vector size for instances where lysine sites were located towards beginning or end of protein
sequence leaving insufficient flanking amino acids for feature vector
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function to find a margin between glycated and
non-glycated lysine residues. To predict the class label y′

of an unknown lysine residue with x′ feature vector the
following function is used

y0 ¼ sign
Xn

i¼1
αiyiκ xi; x

0ð Þ þ β
� �

ð3Þ

where αi are adjustable weights, n is the number of sam-
ples, β is representing the bias and κ(.) is the kernel
function.
We designed our classifier using libsvm [81], a publicly

available and widely used SVM tool, and also accessible
on WEKA platform [82]. Tuning parameters were ob-
tained using grid-search where C = 512, and γ = 0.03125.
We used polynomial learning because it provided better
results given by (xi

Txj + C0)
d where we used C0 = 0 and

degree of polynomial d was taken as 3.

Results and discussion
Prediction metrics
The true positive rate or sensitivity is an important per-
formance indicator of the ability of the classifier to pre-
dict the glycated lysine residues correctly. The metric
varies between 0, (that is classifier is totally inaccurate)
and 1 (signifying the classifier is totally accurate). Hence
the higher the true positive rate, the better the classifier
performance is at detecting the glycated lysine residue.
Sensitivity is given by

Sensitivity ¼ TP
TPþ FN

ð4Þ

where TP (true positive) denotes the number of cor-
rectly identified glycated instances from the test set, and
FN (false negative) denotes the number of incorrectly
classified glycated sites.
The true negative rate or specificity is the ability of the

classifier to identify negative (non-glycated) instances.
This metric also has a range between a value of 0 (totally
incorrect) and a 1 (totally correct) in classifying the
non-glycated lysine residues. TN (true negative) denotes
the number of non-glycated instances identified and FP
(false positive) denote the non-glycated sites identified
as glycated.

Specificity ¼ TN
TNþ FP

ð5Þ

Accuracy (Acc) metric is measured as the total num-
ber of both glycated and non-glycated lysine residues
correctly classified over the total number of test in-
stances (N). This metric also takes on values between 0
(totally inaccurate) and a 1 (totally accurate).

Acc ¼ TPþ TN
N

ð6Þ

Mathew’s correlation coefficient (MCC) metric essen-
tially measures the quality of classification for a classi-
fier. This metric varies between – 1 (total
misclassification), 0 (no better than random prediction),
and 1 (perfect prediction of test instances).

MCC ¼ TN� TPð Þ− FN� FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp

ð7Þ

The best performing predictor will be the one scoring
the highest in majority of the four metrics.

Evaluation methods
The effectiveness of any classifier is measured using
cross-validation methods. The three most widely used
cross-validation schemes across the literature are inde-
pendent dataset, k-fold and jackknife [83, 84]. Since the
dataset for glycation in the curated protein sequences is
limited, it was not practical to obtain additional data to
run independent test validation.
The k-fold cross-validation procedure is carried out by

first partitioning the total benchmark dataset into k
roughly equal folds. Then one fold is held as a test set
and the remaining k − 1 folds are used to train the classi-
fier and a model is constructed. Using the constructed
model and the test dataset that was held out, all predic-
tion metrics are computed. This procedure is repeated k
times as per the fold number chosen to obtain the aver-
age of the performance metrics.
Jackknife process can be viewed as a special instance

of k-fold when k is n-1, where n is the number of sam-
ples. While the jackknife method is recognized as the
least arbitrary that outputs unique results on the given
benchmark dataset [85], the k-fold method offers an ad-
vantage whereby all instances or observations in the
dataset can be used in both the training and test phases.
To evaluate our GlyStruct predictor, we carried out

k-fold cross validation for 6-, 8- and 10-folds and jackknife
test which is a common practice [28, 38, 40, 54, 62].

Sample filtering
The dataset for our study comprised 235 glycated and
1518 non-glycated lysine residues obtained from 55 pro-
tein sequences, which results in a highly imbalanced
data between positive (glycated) and negative (non-gly-
cated) sets with a ratio of over 1:6. While it is a natural
phenomenon in the biological sense, it creates a strong
bias to the negative (or non-glycated) class if the dataset
is used as is to train virtually any classifier. Therefore,
we used k–nearest neighbor (kNN) filter to resolve the
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imbalance in dataset, similar to the approach taken by Jia
et al. [62] and López et al. [54]. Subsequently, the kNN
cleaning treatment with a k value of 16 brought down the
number of negative samples to 303. In other words, the
cleaning treatment reduced the negative samples (non-gly-
cated sites) by removing those samples, which were within
the 16 neighbors of a positive sample (glycated site) to
achieve 235 positive samples and 303 negative samples.

Comparison with benchmark prediction methods
We obtained promising results from the GlyStruct pre-
dictor presented in Table 1. For statistical stability, we took
an average of 50 runs for each cross-validation fold. We
obtained the highest sensitivity 0.7059 for 8-fold
cross-validation while other folds recorded marginally
lower sensitivity within 1 %. We also achieved high specifi-
city at 0.7989 for 10-fold with a deviation of half percent
for other folds. The best values of accuracy and MCC were
0.7562, and 0.5065 respectively (both in 10-fold). The
6-fold results yielded slightly lower than other folds with
0.6984, 0.795, 0.7528 and 0.4983 for sensitivity, specificity,
accuracy and MCC, respectively. The AUCs were 0.7935,
0.7927 and 0.7839 (Fig. 4), for 10-, 8- and 6-folds, respect-
ively. Mathew’s correlation coefficient (MCC) is around 0.5
for each fold indicating that the predictor performance is
promising for glycation prediction. Jackknife procedure
yielded highest sensitivity of 0.7404 and, specificity, accur-
acy, and MCC were 0.7793, 0.7622 and 0.5186 respectively.
We compared our results to the state of the art of bio-

informatics study on glycation Gly-PseACC [28], which
was the only predictor that had the webserver available
for testing our dataset.
The dataset retrieved by Gly-PseAAC authors from

CPLM database is larger than GlyNN and PreGly, which
consisted 223 positive and 446 negative samples filtered
from 72 protein sequences with 40% pairwise sequence
identity. Their dataset is slightly different (by approxi-
mately 5% for positive samples) from the GlyStruct data-
set of 235 positive and 303 negative samples from 55
proteins obtained after filtering with a threshold of 30%

pairwise sequence identity. Therefore, to compare the
performance of Gly-PseAAC webserver, we uploaded our
dataset manually to the Gly-PseAAC webserver by creat-
ing a FASTA file format. The performance results we ob-
tained from the webserver are presented together with
the GlyStruct performance in Table 1.
There was a notable increase in the sensitivity of 0.6845

for Gly-PseAAC method with our dataset from their re-
ported value of 0.5748 for 10-fold. We anticipate that most
of the protein sequences we tested on their webserver may
have been used in training their model primarily because of
the limited datasets available publically in databanks. In
addition, the Gly-PseAAC server has been tuned to a
threshold probability of 0.35 allowing higher misclassifica-
tion of negative samples leading to very high fall out or false
positive rate averaging 32% for the three k-fold validation
schemes. High false positive rate may have a serious bearing
on the clinical significance in terms of better morbidity de-
tection. In contrast, the specificity of Gly-PseAAC for
10-fold was reduced to 0.6745 from the reported 0.8017
and MCC was also slightly lower on our dataset (0.3587
compared to their reported 0.38). The accuracy was also
slightly lower (0.6784) compared to their reported results
(0.6812). In order to show the significance of the achieved
results for GlyStruct, pairwise t-test was conducted. The
p-values obtained were 0.025, 0.019, 0.025 for 10-, 8- and
6-folds respectively. These p-values are less than 0.05,
which demonstrates that improvement on performance by
GlyStruct is significant compared to GlyPseAAC. Signifi-
cance of contribution and the false discovery rates were also
tested for each feature used. All features were found to be
significant contributors to the results obtained. The afore-
mentioned test results are included in Additional file 1.
The GlyNN webserver [27], which is one of the earliest

bioinformatics studies for glycation is still accessible online,
however has restrictions of protein sequence length between
34 and 4000 amino acids. Hence, the job we submitted was
rejected due to the presence of two protein sequences in
our dataset, Q86XX4 of length 4008 amino acids, and
P13191 of length 20 amino acids, which violated the GlyNN

Table 1 Performance evaluation of GlyStruct and compared with other existing method

Method Sensitivity (%) Specificity (%) Accuracy (%) MCC

GlyStruct (10-Fold) 0.7013 0.7989 0.7562 0.5065

GlyStruct (8-Fold) 0.7059 0.7952 0.7562 0.5059

GlyStruct (6-Fold) 0.6984 0.7950 0.7528 0.4983

GlyStruct LOO 0.7404 0.7793 0.7622 0.5186

Gly-PseAACa (10-Fold) 0.6845 0.6745 0.6784 0.3587

Gly-PseAACa (8-Fold) 0.6768 0.6751 0.6784 0.3514

Gly-PseAACa (6-Fold) 0.6830 0.6776 0.6785 0.3579

Gly-PseAACb LOO 0.5874 0.7399 0.6891 0.3198
aGly-PseAAC predictor performance on our dataset
bas reported in [28] for Gly-PseAAC
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server policies. This webserver was developed using a small
dataset curated manually consisting 89 positive and 126
negative glycation sites from 20 peptides, which precedes
the recent datasets [30]. Moreover, the GlyNN authors did
not consider residue sites that were not validated at the time
of development for training the classifier. These sites
marked as “U” to denote “unvalidated site” have since been
validated in the recent iteration of the CPLM databank.
Among other recent methods, the webservers for glyca-

tion, PreGly [40] and iProtGly-SS [42] were not functional
when accessed to test their method. In addition, the pub-
lished codes for Glypre [41] could not be executed in the
absence of a guide. Both Glypre and iProtGly-SS employed
GlyPse-AAC data for training their classifier and used
GlyNN data as comparator dataset. Furthermore, the data-
sets published by Glypre and iProtGly-SS were in seg-
mented format without annotating the protein names,
therefore could not be used for testing GlyStruct pre-
dictor. Therefore, pairwise comparison of performance
with these state of the art methods was not possible.
With an exception of GlyNN and PreGly, all other state

of the art methods including GlyStruct have obtained data
from CPLM database. However, there is a significant

difference in datasets attributed to regular updates to data-
banks, the inconsistencies in the selection of primary se-
quence identity threshold by various authors, and filtering
techniques employed to the negative instances of the data-
set before training the classifier. Nonetheless, we made
comparison with the published results of those methods,
which we could not verify through standard means of web-
servers or codes. The Glypre method published high speci-
ficity of 0.9078 but recorded average sensitivity of 0.5747
compared to 0.7013 achieved by GlyStruct. The accuracy
and MCC for Glypre were reported to be marginally
higher at 0.7968 and 0.52 respectively compared to 0.7562
and 0.51 respectively for GlyStruct. Furthermore, iProt-
Gly-SS published high sensitivity of 0.9238. However, it re-
corded lower specificity of 0.6009 compared to 0.7989 by
GlyStruct. All comparisons are made for 10-fold cross val-
idation which tend to produce best results.
Overall, our predictor GlyStruct, using only structural

features of peptides and SVM as a classifier produced
consistent results (averaged out with 50 runs of
cross-validation for each fold) in all the metrics and for
all folds. It was better performing than the comparator
method, Gly-PseAAC. With other state of the art

Fig. 4 AUC curves of GlyStruct corresponding to (i) 10-, (ii) 8-, and (iii) 6-fold cross-validations
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methods on a similar dataset, GlyStruct outperformed in
one metric or the other by over 10%.
The prime motivation to develop a prediction model for

glycation is to for clinical support in timely diagnosis of
morbidity and cellular conditions in a cost-effective man-
ner. However, for prediction of PTM like glycation, we need
to be mindful of the fact that while sensitivity is highly de-
sired to identify the glycation process, making a false posi-
tive prediction can lead to potentially lethal situation. In
such cases of false positive prediction, the medical profes-
sional may administer medication which would lead to fur-
ther lowering of blood glucose concentration causing an
induced hypoglycemia which can be fatal if not managed
well [86, 87]. The prediction model we developed has a low
false positive rate (or high specificity) that can be instru-
mental in avoiding the induced hypoglycemia situation.

Conclusions
With glycation emerging as one of the clinically important
post-translational modification of proteins in recent times,
classification engine becomes necessary to predict both, gly-
cated and nonglycated lysine residues with high accuracy.
Due to limited dataset and the lack of bias in the sequence
motifs attributed to the non-enzymatic nature of this PTM,
a great challenge arises to make prediction with high accur-
acy. The glycation predictor GlyStruct, we proposed is based
on the secondary structure properties of proteins for which
we considered the local backbone angles, secondary struc-
tures’ transitional probabilities and the accessible surface
area that were obtained through SPIDER2 prediction engine.
The protein sequences were truncated into segments of 13
amino acids for each lysine site to produce feature vectors of
size (104 × 1). Due to highly unbalanced nature of PTM
dataset, k-nearest neighbor filtering was employed to balance
the classes before training the SVM classifier. The predictor
was developed using libsvm on WEKA platform and the
standard grid-search tuning was applied which yielded better
results in comparison to previous studies. The results we ob-
tained has promising levels of robustness due to its relatively
high sensitivity of 0.7059 for 8-fold validation, and specificity
of over 0.79 in all folds. The latter demonstrates the ability
of the predictor to reduce the false positive rate (falsely pre-
dicting glycation). For clinical success, higher values for both
sensitivity and specificity are desirable for this PTM since
false positive prediction can be of more serious concern.
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