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a b s t r a c t 

Motivation. Intrinsically Disordered Proteins (IDPs) lack stable tertiary structure and they actively partici- 

pate in performing various biological functions. These IDPs expose short binding regions called Molecular 

Recognition Features (MoRFs) that permit interaction with structured protein regions. Upon interaction 

they undergo a disorder-to-order transition as a result of which their functionality arises. Predicting these 

MoRFs in disordered protein sequences is a challenging task. 

Method. In this study, we present MoRFpred-plus, an improved predictor over our previous proposed 

predictor to identify MoRFs in disordered protein sequences. Two separate independent propensity scores 

are computed via incorporating physicochemical properties and HMM profiles, these scores are combined 

to predict final MoRF propensity score for a given residue. The first score reflects the characteristics of a 

query residue to be part of MoRF region based on the composition and similarity of assumed MoRF and 

flank regions. The second score reflects the characteristics of a query residue to be part of MoRF region 

based on the properties of flanks associated around the given residue in the query protein sequence. The 

propensity scores are processed and common averaging is applied to generate the final prediction score 

of MoRFpred-plus. 

Results. Performance of the proposed predictor is compared with available MoRF predictors, MoR- 

Fchibi, MoRFpred, and ANCHOR. Using previously collected training and test sets used to evaluate the 

mentioned predictors, the proposed predictor outperforms these predictors and generates lower false 

positive rate. In addition, MoRFpred-plus is a downloadable predictor, which makes it useful as it can 

be used as input to other computational tools. 

Availability. https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred- plus:- Download 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the traditional view of protein structure-function paradigm,

he notion is that the function critically depends on the stable

hree-dimensional structure, however, recent findings revealed that

ost of the functional regions do not adopt a well-defined ter-

iary structure ( Dyson and Wright, 2005; Lee et al., 2014; Uversky,

014; Wright and Dyson, 2015 ). These protein regions are called
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ntrinsically disordered proteins (IDPs) or Intrinsically disordered

egions (IDRs) ( Dyson and Wright, 2005; Tompa, 2011 ). The func-

ional importance of these regions is associated with signal trans-

uction and cell-cycle regulation ( Lee et al., 2014; Uversky, 2014 ).

ecently, many different types of functional regions have been in-

estigated and analyzed to understand IDRs ( Lee et al., 2014 ). Of

articular interest, first, are the linear motifs that are enriched in

DRs. Second, are the disordered segments that provide disorder-

o-order transition upon binding, these segments are called molec-

lar recognition features (MoRFs) ( Disfani et al., 2012; Lee et al.,

014; Malhis and Gsponer, 2015 ). Third, are the interaction do-

ains that are identified using crystallography and sequence anal-

sis methods ( Lee et al., 2014 ). 

https://doi.org/10.1016/j.jtbi.2017.10.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.10.015&domain=pdf
https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download
mailto:ronesh.sharma@fnu.ac.fj
mailto:alok.sharma@griffith.edu.au
https://doi.org/10.1016/j.jtbi.2017.10.015
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Linear motifs are known as short linear motifs (SLiMs) and

are of 3 to 10 amino acids in length ( Edwards et al., 2007;

Lee et al., 2014; Wright and Dyson, 2015 ). On the other hand,

MoRFs are peptide segment of length 10 to 70 amino acids.

Similar to our previous study ( Sharma et al., 2016 ), we focus

on MoRFs of size 5 to 25 amino acids located within long

IDPs ( Disfani et al., 2012 ). Several computational methods have

been recently outlined to predict functional sites in IDPs. Of a par-

ticular interest to predict SLiMs and MoRFs, recently predictors

MoRFchibi ( Malhis and Gsponer, 2015 ), MoRFpred ( Disfani et al.,

2012 ), ANCHOR ( Dosztányi et al., 2009; Mészáros et al., 2009 ), MF-

SPSSMpred ( Fang et al., 2013 ), γ -MoRF-PredII ( Cheng et al., 2007 ),

SliMpred ( Mooney et al., 2012 ), SLiMDis ( Davey et al., 2006 ) and

SliMFinder ( Edwards et al., 2007 ) have been developed. It is ob-

served that SLiMs and MoRFs overlap each other, but the method

of identifying their locations are very different. Due to the short

lengths of SLiMs, identifying them is difficult compared to the

identification of MoRFs and prediction results in detection of high

false positive rate (FPR). Overall, with the overlapping feature of

SLiMs and MoRFs, it is a challenging task to computationally iden-

tify the location of these functional sites. 

Recently developed MoRF predictors have been mostly bench-

marked by comparing their performance with that of MoRFpred

and ANCHOR. ANCHOR is available as downloadable software

whereas MoRFpred ( Disfani et al., 2012 ) is a web based predictor,

the prediction approach of both the predictors are very different

and are described in detail in our previous study ( Sharma et al.,

2016 ). For prediction of MoRF regions of size 5 to 25 residues, re-

cently MoRFchibi ( Malhis and Gsponer, 2015 ) predictor has been

introduced. MoRFchibi uses local physicochemical properties of

amino acids for prediction of MoRF regions by employing two sup-

port vector machine (SVM) models. The first model uses composi-

tion contrast information of training with no similarity information

and the second model mainly targets similarity information and

the final propensity score is processed by using Bayes rule. 

Since MoRFchibi does not rely on any component predictors,

this feature of MoRFchibi makes it a very good MoRF predictor

in term of processing speed and can be utilized as a component

predictor for MoRF prediction. However, with the complexity and

importance of MoRF regions, the prediction accuracy is limited.

Performance evaluation using the benchmark dataset introduced

in Disfani et al. (2012) provided area under the receiver operating

characteristics (ROC) curve of 74 percent for MoRFchibi, 68 percent

for MoRFpred and 61 percent for ANCHOR. 

In this study, we present MoRFpred-plus predictor, an improved

predictor over our previous published predictor ( Sharma et al.,

2016 ). Here, we utilize hidden Markov model (HMM) profiles

with local physicochemical properties of amino acids for identi-

fying MoRFs in IDR sequences, whereas in our previous predic-

tor ( Sharma et al., 2016 ) we only used HMM profiles. Feature vec-

tor is extracted to represent query protein sequence and an SVM

model is used to generate propensity score for each query residue.

Two novel aspects are incorporated in the proposed predictor, first,

we use comprehensive set of features encoded in HMM profiles

and physicochemical properties. Second, we select and combine

suitable SVM models to predict the propensity scores. In terms

of performance measure, the proposed predictor is more accurate

than ANCHOR, MoRFpred and MoRFchibi. MoRFpred-plus achieved

AUC of 75.5 percent, which is 15.5 percent greater than ANCHOR,

8.2 percent greater than MoRFpred and 1.5 percent greater than

MoRFchibi. Moreover, the proposed predictor outperforms the best

accurate predictor and generates lower false positive rate. 
 

e  

i  

o  
. Materials and Methods 

.1. Benchmark dataset 

In order to benchmark the proposed predictor, we used the

raining and test sets that were previously used to benchmark

oRFchibi ( Malhis and Gsponer, 2015 ), MoRFpred ( Disfani et al.,

012 ) and ANCHOR ( Dosztányi et al., 2009 ) predictors. The data

et was initially created by Disfani et al. (2012) . They collected

tructures with protein-peptide interaction from protein data bank

PDB) and identified peptide regions of 5 to 25 residues which

ere supposed to be MoRF regions. From 840 protein sequences

hey obtained, further to analyze MoRF predictors they divided

hese into 421 training sequences and 419 test sequences. The

raining set contains 245, 984 residues, in which 240, 588 are

on-MoRF residues and the test set contains 258, 829 residues,

n which 253, 676 are non-MoRF residues. To validate MoRF pre-

ictors, Malhis et al. (2015) filtered and assembled a test set

EXP53). This test set has 53 non-redundant protein sequences

hich contain MoRF regions that are experimentally verified to

e disordered in isolation. Within 53 protein sequences, there are

,432 MoRF residues and 22,754 non-MoRF residues. From 2,432

oRF residues, 729 are from sections of short MoRFs (up to 30

esidues) and 1,703 are from sections of long MoRFs (longer than

0 residues). The second test set was used to validate and com-

are MoRFpred-plus. Each of the sequence in training and test

et are annotated with single MoRF of length 5 to 25 residues,

herefore, bias in the dataset is introduced as there are more

on-MoRF residues compared to MoRF residues in the data set,

.e., training set has 5396 MoRF residues compared to 240,588

on-MoRF residues, test set has 5153 MoRF residues compared to

53,676 non-MoRF residues. To reduce the risk of over prediction,

isfani et al. (2012) filtered sequence in the data sets such that no

ore than 30 percentage sequence similarity exists between any

f the sequences. 

.2. Feature extraction techniques 

Features from protein sequence can be captured from many dif-

erent sources of information. These could be structural informa-

ion of protein sequence ( Dehzangi et al., 2013 ), syntactical and

hysicochemical properties of amino acids ( Dubchak et al., 1997;

harma et al., 2015 ), gene ontology information ( Wang et al., 2015 )

nd evolutionary information ( Dehzangi et al., 2013; Lyons et al.,

016; Sharma et al., 2013 ). Recent findings focus on the use of

volutionary information for improving prediction accuracies. To

se evolutionary information as a source for feature extraction,

ither position specific scoring matrix can be utilized (generated

sing PSI-BLAST ( Altschul et al., 1997 )) or hidden Markov model

HMM) profiles (generated using HHblits Remmert et al., 2011 ) can

e utilized. Both are sequence profiles. For a given query protein

equence, PSI-BLAST or HHblits searches a protein database, per-

orms multiple sequence alignments (MSAs) to find similar protein

equences and extracts a profile that provides a substitution proba-

ility of each query residue in the protein sequences. In this study,

eatures are extracted from physicochemical properties encoded in

mino acid indexes and from evolutionary profiles of protein se-

uences. 

.3. Overview of the proposed method 

Fig 1 shows the overview of the proposed method, two differ-

nt methods are used to extract useful features from amino acid

ndexes and HMM profiles of protein sequences. The two meth-

ds are named as MoRF region flank method and MoRF residue
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Fig. 1. Overview of the proposed predictor (MoRFpred-plus). The two methods used are Region flank method and Residue flank method. Output score of SVM models are 

fused using the common averaging strategy. In common averaging strategy, score of all models are added and is divided by the number of models used. 

fl  

o  

t  

s  

fl  

+  

p  

r

 

t  

s  

f  

r  

d  

C  

v  

t

2

 

c  

2  

f  

s  

M  

t  

a  

i

2

 

t  

q  

s  

H  

a  

H  

q  

o  

d  

u  

e  

a  

 

l  

H

2

 

s  

i  
ank method. For rest of the paper, we refer to these two meth-

ds as RegionMoRF and ResidueMoRF methods, respectively. Using

he first method, feature vectors are extracted to represent compo-

ition and sequence similarity information of assumed MoRF and

ank regions. A feature vector of size (number of amino acid index

 20) × 2 is fed into a LibSVM classifier ( Chang and Lin, 2011 ) to

redict the propensity score of each query residue to form a MoRF

egion. 

In the second method, sliding window is used to extract fea-

ure vector of size w × 20 (where w refers to the sliding window

ize and number 20 refers to selected columns of HMM profile)

rom HMM profile of input protein sequence. These features rep-

esent the flank properties of MoRF residues and are used to pre-

ict propensity score of each query residue to form a MoRF region.

ommon averaging is applied to the scores of each method to pro-

ide the final MoRF prediction score (the detailed analyses of the

wo methods are given later). 

.4. Amino acid indexes 

We used two sets of physicochemical properties which are in-

luded in standard 544 amino acid indexes ( Kawashima et al.,

008 ), these indexes are available at the web-link: ftp://

tp.genome.jp/pub/db/community/aaindex/ . These two sets have

hown significant importance in relation to MoRF prediction in

alhis and Gsponer ( Malhis and Gsponer, 2015 ). The first set con-

ains 14 amino acid indexes and the second set contains 13 amino
cid indexes. The details of these indexes are given in supporting

nformation S1 Text . 

.5. HMM profiles 

To generate HMM profiles, HHblits searches a protein database

o find significant similar protein sequence to build multiple se-

uence alignments (MSAs). Using this MSAs after each iterative

earch, HHblits computes HMM profiles. For each protein sequence,

MM profile contains substitution probabilities of each common

mino acid based on its position within the protein sequence.

MM profiles provide extra information compared to other se-

uences profiles, it has extra 10 columns to represent information

f insertion, match and deletion during MSAs. Using NR20 protein

atabase, we computed the HMM profile of each protein sequence

sing HHblits with its cut off value (E) set to 0.001 in four it-

rations. HHblits generates HMM profile of size L × 30 matrix for

 given query protein sequence of length L . Using the equation

p = 2 (−N/ 10 0 0) , the output values in HMM profiles are converted to

inear scores. For this study, we only use the first 20 columns of

MM profile. 

.6. Training 

We took similar approach as in our previous

tudy ( Sharma et al., 2016 ) and divided the training sequence

nto two segments. From one of the segment we extract positive

ftp://ftp.genome.jp/pub/db/community/aaindex/
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samples for training and from the other segment we extract

negative samples for training. Feature vectors are generated for

the samples and are used for training the model. 

For RegionMoRF method, features are generated from indexes

and HMM profiles such that each index (or each profile column)

generates two features: the first one is computed as the average

value of scores over the supposed amino acids of MoRF region and

the second one is computed as the average value of scores over up

to 24(12 × 2) amino acids of flanks surrounding the MoRF region

(each flank of 12 amino acids, unless if MoRF region is present at

the start or at the end of the protein sequence). For each sequence,

same number of positive samples are selected as the number of

MoRF regions per sequence. 

For ResidueMoRF method, sliding window technique is used to

extract features from HMM profiles. For each MoRF residue present

in the segment, its residue information is taken together with the

information of left and right neighbor regions (maximum of 12

amino acids). The number of positive sample is equal to the num-

ber of MoRF residues present in each training sequences. The de-

tails of the above two methods are described in supporting infor-

mation S1 Text . 

The dataset used in this study is unbalanced. There are more

non-MoRF residues present in the sequence compared with the

number of MoRF residues. Thus, it could lead to unbiased predic-

tion. To address these, first we take non-MoRF residues that are

not overlapping the flanks of MoRF region and we randomly select

same number of negative samples. Second, we increase the ratio

between positive and negative samples to 1:2, i.e. for each MoRF

sample we select 2 non-MoRF samples. Further, this ratio is in-

creased to 1:3 and the best performing models are selected. More-

over, to avoid over scoring of the training data, non-MoRF samples

for each model are randomly selected. 

2.7. Testing 

To predict scores for a query sequence, features are extracted

using a sliding window. It would be easier to select sliding win-

dow size, if MoRF sizes are known for the query sequence. How-

ever, since MoRF sizes are not known, for RegionMoRF method,

19 different sizes of sliding windows are used to analyze each

of the query sequences. These sizes have shown significant en-

hancement in Malhis and Gsponer (2015) for MoRF prediction.

The sizes are from 6 to 24, since the proposed predictor is lim-

ited to predict MoRFs of size 5 to 25 residues. With size rang-

ing from 6 to 24, each residue in the query sequence will receive

a total of 285 scores except those at the start or end of the se-

quence. Each of these scores are processed and propensity score

for each residue is evaluated as either maximum or minimum of

285 scores. For ResidueMoRF method, the window is centered on

the query residue and the flank size is varied on both sides to

extract features. These features are then processed using an SVM

classifier. 

2.8. SVM model and score fusion 

SVM classifier with Radial basis function (RBF) and Sigmoid ker-

nels were used to evaluate the features generated using the above

two methods. 

For RegionMoRF method, using each of the SVM kernels with

different C and gamma values, the features generated from amino

acid indexes and HMM profiles are evaluated to meet the perfor-

mance criteria. For ResidueMoRF method, using window size of 7

(w is used as 7 due to the limitation on processing speed), SVM

classifier is parameterized to obtain best AUC, success rate and FPR.

Furthermore, these parameters are then used to evaluate and rank

the features generated by varying the window size. Finally, the
roposed method uses common averaging (add all model scores

nd divide it by the number of models used) at different stages to

use the propensity scores of multiple best performing model. 

.9. Performance measure 

We used the evaluation metrics that were previously used to

nalyze MoRF predictors ( Disfani et al., 2012; Malhis and Gsponer,

015; Malhis et al., 2015 ). These are AUC, success rate and ac-

uracy. AUC is the area under the receiver operating characteris-

ics curve, success rate compares the average predicted propensity

cores between actual MoRF residues and non-MoRF residues. Ac-

uracy shows the total number of residues that are correctly pre-

icted. These metrics are defined in Disfani et al. (2012) . 

. Results 

The performance of the proposed predictor is evaluated us-

ng a test set and is compared with other MoRF predictors, AN-

HOR ( Dosztányi et al., 2009 ), MoRFpred ( Disfani et al., 2012 ) and

oRFchibi ( Malhis and Gsponer, 2015 ). 

.1. SVM model and feature selection 

To achieve high AUC, success rate and FPR for RegionMoRF

ethod, we selected two high noise tolerance kernels with high

amma value of 5 and low gamma value of 0.0038 to evaluate and

ank appropriate features generated from amino acid indexes and

MM profiles. Feature vectors generated are individually evaluated

rst and then are concatenated in order to meet the performance

riteria. For ResidueMoRF method, the window size is varied to se-

ect features generated from HMM profiles and appropriate SVM

odels with different kernels and gamma values are selected. 

For both methods, the sampling ratio between MoRF and non-

oRF sample is increased and similar evaluation is carried out to

elect 3 best performing models. Common averaging is applied to

he output scores of each model to provide the final MoRF predic-

ion score for each method (for more details on model selection

or both methods please see supporting information S1 Text ). Ob-

erving performance during model selection, it is noted that the

odels alone tend to over score MoRFs (they have high FPR, low

uccess rates and AUCs). Thus, this indicates that the models in-

ividually are not able to identify MoRFs accurately. Therefore, we

pply common averaging at different stages to combine the scores

enerated by different models. 

.2. Comparison with available predictors 

The performance metrics of the proposed predictor and the

vailable predictors are compared and are outlined in Table 1 .

t is noted that MoRFpred-plus achieves improved performance

n terms of AUC, success rate, FPR and accuracy. Compared to 8

omponent predictors of MoRFpred, MoRFpred-plus only uses one

omponent predictor and achieves 8.2 percent increase in AUC. As

hown in Fig 2 , we generate AUC curves for the available pre-

ictors and the proposed predictor using test set. It is observed

hat MoRFpred-plus achieves lower FPR at any given TPR when

ompared with ANCHOR, MoRFpred and MoRFchibi. This is also

emonstrated in Table 2 . The superior performance of MoRFpred-

lus lies in the combination of HMM profiles with amino acid in-

exes and ranking of appropriate SVM kernels. Moreover, we vali-

ate and compare the proposed predictor with the available MoRF

redictors using the second test set (EXP53). Since the proposed

nd available MoRF predictors are trained to predict MoRFs of sizes

p to 30 residues, however, EXP53 set contains MoRFs longer than

0 residues. Therefore, we provide performance metrics for short
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Table 1 

Overall Comparison of results with other predictors using test set. 

Method/predictors TPR AUC Success rate FPR Accuracy 

ANCHOR 0.222 0.600 0.611 0.092 0.894 

MoRFPred 0.222 0.673 0.718 0.038 0.948 

MoRFchibi 0.222 0.740 0.730 0.035 0.951 

MoRFpred-plus (proposed) 0.222 0.755 0.745 0.027 0.958 

AUC, Success rate and Accuracy for proposed and available predictors. Bold numbers in- 

dicate the best performance metrics. 

Fig. 2. AUC curves for the available predictors and the proposed predictor gener- 

ated using test set. AUC curves for predictors: MoRFpred-plus; MoRFchibi; Region- 

MoRF method; ResidueMoRF method; MoRFpred and ANCHOR. 

Table 2 

FPR as a function of TPR using test set. 

TPR MoRFpred-plus MoRFchibi MoRFPred ANCHOR 

0.1 0.005 0.009 0.011 0.031 

0.2 0.022 0.030 0.033 0.075 

0.3 0.046 0.062 0.072 0.165 

0.4 0.076 0.105 0.145 0.248 

0.5 0.127 0.162 0.241 0.341 

FPR for TPR values of 0.1, 0.2, 0.3, 0.4 and 0.5. Bold numbers indi- 

cate the best performance metrics. 

Table 3 

AUC values for test and EXP53 (short and long) sets. 

Test sets MoRFpred-plus MoRFchibi MoRFPred ANCHOR 

Test 0.755 0.740 0.673 0.600 

EXP53 0.821 , 0.670 0.790, 0.679 0.673, 0.598 0.683, 0.586 

AUC values of MoRFpred-plus predictor compared to those of MoRFchibi, MoRF- 

pred and ANCHOR using test and EXP53 sets. For EXP53 set, MoRF prediction 

was evaluated for short MoRFs (up to 30 residues) and long MoRFs (more than 

30 residues), AUC values are in the form short, long. Bold numbers indicate the 

best performance metrics. Underline values are taken from Malhis et al. (2015) . 
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nd long MoRFs separately. Table 3 shows the achieved AUC val-

es. It is noted that there is consistent improvement in the perfor-

ance when compared with performance of available predictors.

his symbolizes that the performance improvement is not due to

ver fitting. 
. Discussion 

We presented MoRFpred-plus predictor which utilizes two

ethods named as RegionMoRF method and ResidueMoRF method

o extract important features from amino acid indexes and HMM

rofiles to predict MoRFs in protein sequences. Compared with

vailable predictors, the proposed predictor clearly demonstrates

ignificant improvement in terms of AUC, success rate, accuracy

nd FPR. To compare the proposed predictor in terms of its pro-

essing speed, we tested MoRFchibi and ANCHOR using the entire

est set on i5, 3.5GHz computer, since both do not require mul-

iple sequences alignments. Using a single sequence from test set

Uniprot:Q38087) with 903 residues, we tested MoRFpred-plus us-

ng i5, 3.5GHz computer and since MoRFpred is not downloadable,

e submitted single sequence (Uniprot:Q38087) to the MoRFpred

rediction server. 

Prediction time for ANCHOR and MoRFchibi, both do not re-

uire generation of evolutionary profiles, therefore were fastest

ith speed 3.9 × 10 6 residues/minute (r/m) and 10.5 × 10 3 r/m, re-

pectively. The proposed predictor came third with 526 r/m and

oRFpred came slowest at 48r/m. Table 4 shows the overall com-

arison. The overall comparison may not be entirely fair, since

oRFpred server hardware processor is unknown and hence AN-

HOR and MoRFchibi do not rely on evolutionary information such

s PSI-BLAST or HHblits. 

To provide analyses on the average length of MoRFs predicted

y MoRFpred-plus, we threshold the predicted scores at values

f 0.50, 0.55, 0.60 and 0.65, respectively. At these thresholds, we

how TPR and FPR by MoRFpred-plus in Table 5 and plot of length

f MoRFs versus percentage of correctly predicted residues in Fig 3

nd Fig 4 . At a threshold value of 0.50 in Fig 3 , it is observed that

oRF of length 14 is predicted very well from test set followed by

 good performance obtained for MoRFs of length 10, 12, 16, 21

nd 22. In Fig 4 , it is noticed that MoRFs length up to 30 residues

re predicted very well compared to MoRFs length greater than

0 residues, this confirms that MoRFpred-plus is trained to pre-

ict short MoRFs and here we are able to evaluate how it reacts to

ong MoRFs. 

For evolutionary profiles, MoRFpred-plus relies on HHblits,

hich is faster than PSI-BLAST and generates more accurate align-

ents. Extracting features from HMM profiles and concatenating

t with features extracted from amino acid indexes, MoRFpred-

lus offered higher predicting speed compared with MoRFpred.

hough ANCHOR and MoRFchibi are the fastest in terms of pre-

icting speed, the results show that MoRFpred-plus is more ac-

urate. The prediction time for MoRFpred-plus mainly depends on

he generation of HMM profiles. 

Overall, MoRFpred-plus is a new MoRF predictor and its success

elies on the use of HMM profiles computed from MSAs and the

se of amino acid properties encoded in 544 common amino acid

ndexes. The improved performance is firstly, the result of adopt-

ng a suitable architecture that combines multiple models score

t two different stages and secondly, uses different source of fea-

ures for each model with different classification parameters. The

se of ResidueMoRF method for feature extraction provided a com-
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Table 4 

Overall Comparison with available predictors. 

Model predicting speed (r/m) 

Predictors AUC values using test set i5 3.5GHz computer Predicting Server Multiple sequence alignments downloadable 

ANCHOR 0.600 3.9 × 10 6 - × � 

MoRFchibi 0.740 10.5 × 10 3 - × � 

MoRFpred-plus 0.755 526 - � � 

MoRFpred 0.673 - 48 � ×

Predicting speed: residues/minute (r/m). The server hardware processor for MoRFpred is unknown. 

Fig. 3. Length of MoRFs versus percentage of correctly predicted residues using test set, where MoRF length is from 6 to 25 residues. Percentage of correctly predicted 

residues is shown for threshold values of 0.50, 0.55, 0.60 and 0.65. 

Fig. 4. Length of MoRFs versus percentage of correctly predicted residues using EXP53 set. This set contains both short MoRFs (up to 30 residues) and long MoRFs (greater 

than 30 residues). Percentage of correctly predicted residues is shown for threshold value of 0.50. 
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Table 5 

TPR and FPR with different threshold for test and EXP53 sets. 

Score Threshold TPR (test, EXP53) FPR (test, EXP53) 

0.50 0.617, 0.595 0.223, 0.278 

0.55 0.440, 0.366 0.099, 0.129 

0.60 0.265, 0.203 0.039, 0.047 

0.65 0.150, 0.068 0.012, 0.014 

TPR, FPR is given in the form test, EXP53. 
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rehensive set of information to distinguish a MoRF residue along

ts flank region. Furthermore, using RegionMoRF method and con-

atenating features generated from HMM profiles and amino acid

ndexes provided composition and similarity information between

oRF region and its surrounding regions resulting in performance

mprovement. 

To predict MoRF scores in query protein sequence, predictors

re supposed to be consistent on the entire sequence length. How-

ver, if the regions in the query sequence have similar properties

o that of training sequence region, this could result in biased pre-

iction and misclassify MoRF residues. To avoid biased prediction,

oRFpred-plus uses several approaches, these are: two different

ethods of feature extraction; two sources for feature extraction;

VM models with different parameters; suitable sampling ratios

etween MoRF and non-MoRF samples; selecting non-MoRF seg-

ents that are not flanks of MoRF region and randomly selecting

on-MoRF samples for each model. From the result, it is noted that

ifferent models may illustrate different biasing with same train-

ng data, i.e. SVM model with sigmoid kernel avoids over scoring

hereas RBF kernel turns to over score their training data. This is

emonstrated in the results of ResidueMoRF method (please refer

o supporting information S1 Text ). Moreover, applying common

veraging at two stages, MoRFpred-plus avoids producing biased

cores. 

The proposed predictor only utilizes evolutionary and physic-

chemical information; therefore, we compare this predictor

ith predictors of similar approaches. Recently, MoRFchibi-

eb ( Malhis et al., 2015 ) and MoRFchibi-light ( Malhis et al.,

016 ) predictors has been proposed. It uses previously published

redictors MoRFchibi, other disordered predictors and conserva-

ion information to combine prediction scores at several stages

o predict MoRFs. Nonetheless, incorporating number of predic-

ors and combining their scores will significantly improve the

verall performance of predicting MoRFs in protein sequence,

.e. MoRFchibi-web achieved AUC of 0.800, and MoRFchibi-light

chieved AUC of 0.777 evaluated on test set. Using single sequence

Uniprot:Q38087), we tested both predictors on i5 3.5GHz com-

uter and MoRFchibi-web was also tested on its prediction server.

he predicting speed of MoRFchibi-light remains almost same as

he speed of MoRFchibi, however, the speed for MoRFchibi-web is

ignificantly reduced to 80 r/m compared with 526 r/m for the

roposed predictor. MoRFchibi-web server predicting speed came

o 588 r/m, however, the server hardware processor is unknown.

he proposed predictor builds predicting models using primary

rotein information, therefore, does not rely on any other disor-

ered predictors. 

The proposed predictor is downloadable and the output scores

rovided are numerical, since it is assumed that different protein

equences in different applications might require different levels of

hreshold values. Overall, MoRFpred-plus is available without any

imitation and can be easily integrated as input to other applica-

ions. 
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