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Abstract
A brain-computer interface (BCI) system allows direct communication between the brain and the external world. Common
spatial pattern (CSP) has been used effectively for feature extraction of data used in BCI systems. However, many studies show
that the performance of a BCI system using CSP largely depends on the filter parameters. The filter parameters that yield most
discriminating information vary from subject to subject and manually tuning of the filter parameters is a difficult and time-
consuming exercise. In this paper, we propose a new automated filter tuning approach for motor imagery electroencephalography
(EEG) signal classification, which automatically and flexibly finds the filter parameters for optimal performance. We have
evaluated the performance of our proposed method on two public benchmark datasets. Compared to the existing conventional
CSP approach, our method reduces the average classification error rate by 2.89% and 3.61% for BCI Competition III dataset IVa
and BCI Competition IV dataset I, respectively. Moreover, our proposed approach also achieved lowest average classification
error rate compared to state-of-the-art methods studied in this paper. Thus, our proposed method can be potentially used for
developing improved BCI systems, which can assist people with disabilities to recover their environmental control. It can also be
used for enhanced disease recognition such as epileptic seizure detection using EEG signals.

Keywords Brain-computer interface (BCI) . Filter tuning . Genetic algorithm (GA) .Motor imagery (MI) . Temporal filters

1 Introduction

A brain-computer interface (BCI) system can bridge the gap
between humans and computers by translating thoughts into
control signals, which can be used to control external devices

[24]. It can be used to assist severely disabled people to live a
quality life with minimum or no dependence. Motor imagery
(MI) is an important paradigm in developing a BCI system that
allows direct human-computer interaction (HCI), i.e., allowing
communication between the brain and the external devices with-
out the involvement of peripheral nerves and muscles [24]. BCI
research is increasingly gaining interest as it aims to re-establish
independence and reduce social exclusion for people with dis-
abilities. BCI systems have been explored for a wide range of
applications such as communication control [12], movement
control [20], environment control [5], neuro-rehabilitation [9,
22, 30, 31, 43], P300-based word typing system [1], biometric
identification [18], and brain wave-controlled robots and wheel-
chairs for the disabled people [23, 28]. Biomedical engineering is
the major focus and emphasis of the current BCI research [9,
14–16, 21, 22, 30, 42, 44, 51, 53, 58].

Research in the field of MI-BCI systems is ongoing as there
are still many problems that exist and are yet to be addressed
properly. Focus is also on developingmore accurate, reliable, and
computationally efficient MI-BCI systems that can be incorpo-
rated with wearable devices. A range of approaches have been
reported for solving different aspects of the problem.
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CSP has been widely used in MI-BCI applications as it
aims to find the spatial filters that maximize the variance of
one class, while minimizing the variance of the other class in
order to discriminate between different classes. CSP was first
introduced for a two-class problem and later extended to
multi-class problem. The conventional CSP approach uses a
single wide frequency band mostly in the range of 8–30 Hz,
covering both the mu and beta rhythms. However, certain
frequency components are useless resulting in degrading the
overall performance of the system. To improve the perfor-
mance of the conventional CSP approach, common spatio-
spectral pattern (CSSP) [19] and common sparse spectral spa-
tial pattern (CSSSP) [7] methods were proposed.

The responsive frequency bands vary from subject to sub-
ject, and to address this problem, the use of multiple frequency
bands has been proposed [3, 25, 46]. In [25], a sub-band CSP
(SBCSP) method has been proposed. This paper uses multiple
filters (filter banks) to decompose the signal into multiple bands
called sub-bands. CSP is then performed separately on each of
these sub-bands to extract the variance-based CSP features.
Linear discriminant analysis (LDA) is then performed on each
feature set obtained from the separate sub-bands in order to
reduce the feature dimensionality of each sub-band to one.
Thus, one-dimensional features of each sub-band (LDA scores)
are fused together and fed into a support vector machine (SVM)
classifier. The method performed well and outperformed the
CSP, CSSP, and CSSSP methods. The shortfall of the SBCSP
method is that since a number of sub-bands are used, the num-
ber of extracted features also increased and some of which are
not useful and tend to degrade the performance of the system.
To address this issue, filter bank CSP (FBCSP) [3] has been
proposed, in which all the variance-based CSP features from
each sub-band are combined together and different feature se-
lection and classification methods have been evaluated. Feature
selection is employed in order to select the significant features,
thereby removing the redundant features. Although FBCSP
outperformed the SBCSP method, it still utilized several sub-
bands that lead to higher computational cost. To address this
issue, a discriminative filter bank CSP (DFBCSP) [46] method
has been proposed. In DFBCSP, the signals are decomposed
intomultiple sub-bands (12 sub-bands in the frequency range of
6–40 Hz) during training phase. Fisher’s ratio of the band spec-
tral power of channel C3 is then used to select the top 4 sub-
bands that give maximum discrimination between the different
tasks. Channel C3 located on the contralateral hemisphere was
selected as signals from sensorimotor cortex have shown to
have maximum discriminating power amongst several MI
tasks. Signals from contralateral channels C3, C4, and Cz and
its surrounding channels were used for estimating Fisher’s ratio.
The authors discovered that single channel C3 or C4 alone
offered superior performance in selecting the sub-bands and
thus channel C3 has been used. The selected sub-bands are then
used for extracting the variance-based CSP features and fed into

an SVM classifier for classification. The method achieved a
reduced computational cost compared to SBCSP and FBCSP
and also performed better.

To address the issue of computation cost due to the use of
large number of sub-bands and due to the fact that some sub-
bands may contain redundant information, a sub-band binary
particle swarm optimization (BPSO) approach using CSP [49]
has been proposed. In sub-band BPSO-CSP, the EEG signals
are decomposed into sub-bands using multiple filter banks as
in DFBCSP. Then, the BPSO algorithm is employed to select
the sub-bands that give optimal performance using the training
data. Recently, a sparse filter band CSP (SFBCSP) [56] meth-
od that uses multiple filter bands is proposed, which optimizes
the sparse patterns. Bayesian learning has also gained in-
creased attention recently and has been used for feature selec-
tion in various applications [45, 57]. In [54], a sparse Bayesian
learning approach (SBLFB) has been used for obtaining
sparse features that are used for MI EEG signal classification.
A number of studies have explored feature optimization and
classifier optimization for improved EEG signal classification
in BCI applications. A method based on multi-kernel extreme
learning machine (MKELM) [55] has been proposed for EEG
signal classification. Gaussian and polynomial kernels have
been integrated together with multi-kernel learning approach
for more robust classification of multiple non-linear feature
spaces. In [48], a spatio-temporal feature extraction in con-
junction with multivariate linear regression has been pro-
posed, which improved the classification performance by
learning discriminative steady-state visual evoked potential
(SSVEP) features. A number of component analysis methods
have also been proposed for processing biomedical data such
as independent component analysis (ICA), blind source sepa-
ration, and matrix-based component analysis methods [58].

During MI, the power of the EEG signal in certain specific
regions of the brain decreases and later increases as the MI
concludes. These physiological phenomena are known as
event-related desynchronization (ERD) and event-related syn-
chronization (ERS), respectively [26]. ERD and ERS are di-
rectly related to sensory motor rhythms mu and beta. The mu
(8–12 Hz) and beta (18–25 Hz) rhythms are excellent features
for MI signals. However, the frequency band varies across
different subjects together with the varying psychological
states of the subjects [2]. CSP has been widely explored and
used effectively for formulating spatial filters in ERD/ERS
detection [29]. Although CSP has performed considerably
well for spatial feature extraction, the filtering of signals in
the time domain confines its performance. Using improper
frequency range for the filter or simply using unfiltered EEG
signal generally yields undesirable classification results [25].
Thus, while employing CSP, usually a broad frequency band
is used or the filters are manually tuned for each of the subjects
[17]. These approaches are not suitable for obtaining optimal
performance as the wide band contains certain frequency
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ranges that are not useful. On the other hand, manually tuning
is a time-consuming and difficult approach. When filtering is
performed on raw data, the filter parameters need to be select-
ed carefully [50].

To address the problem of selecting subject-specific frequen-
cy band that achieves optimal performance using the CSP al-
gorithm, this paper proposes the temporal filter parameter opti-
mization with CSP approach (TFPO-CSP predictor). A BCI
system usually involves four phases: (1) temporal filtering of
the EEG data, (2) feature extraction, (3) feature selection and (4)
classification. In this work, we mainly focused on phase 1, i.e.,
temporal filtering to obtain the optimum parameters and the
other 3 phases will be implemented as in CSP approach. We
also aimed to employ a single bandpass filter in a quest to keep
the computation complexity of the resulting system to a mini-
mum. Generally, in phase 1, the signal is filtered either using
single or multiple bandpass filters. Spatial filtering is performed
and features are extracted in phase 2. The third phase is usually
incorporated to select the most discriminating features in order
to improve the system performance. The final phase involves
using a suitable classifier to classify the EEG signals. The public
benchmark dataset IVa of BCI Competition III and dataset I of
BCICompetition IVare used to show that the proposed approach
can be used to select the appropriate subject-specific frequency
band for optimal performance. The effectiveness of the proposed
TFPO-CSP predictor over the state-of-the-art methods such as
FBCSP, DFBCSP, and SBLFB is demonstrated.

The following sections of the paper are organized as fol-
lows. Section 2 presents the proposed TFPO-CSP predictor
while in Sections 3 and 4 the experimental study and findings
are presented and discussed. Section 5 draws the conclusion
and gives insight of some future works.

2 Methods

2.1 Description of the datasets

The public benchmark Dataset IVa of BCI Competition III [6]
and Dataset I of BCI Competition IV [4] (referred to as dataset 1
and dataset 2 from here onwards, respectively) have been used
for evaluating the effectiveness of the proposed approach.

Dataset 1 contains 118 channels of EEG signals for right hand
and left foot MI tasks, which have been recorded from five
healthy subjects labeled aa, al, av, aw, and ay. The down sampled
signal at 100 Hz has been used. It contains 140 trials of each task
for each of the subjects. A detail description of the dataset can be
found online at [http://www.bbci.de/competition/iii/].

Dataset 2 contains 59 channels of real long-term EEG sig-
nals recorded for left hand and right hand MI tasks acquired
from 7 healthy subjects (named a to g). The down sampled
signal at 100 Hz has been used, which contains 200 trials for
each subject with equal number of each type of MI tasks. A

detail description of the dataset can be found online at [http://
www.bbci.de/competition/iv/].

2.2 Experimental setup

In this study, we have extracted the EEG data between 0.5 and
2.5 s (i.e., 200 time points) after the visual cue. The number of
CSP filters is set to 6 (i.e.,m = 3) in all experiments, except for
the DFBCSP and SBLFB methods in which two CSP filters
have been used (i.e.,m = 1). In all experiments (except for the
proposed approach), an eighth-order butterworth bandpass
filter has been used and SVM is used as the classifier. The
following experimental settings have been used for each of
the methods:

& CSP: A butterworth bandpass filter with passband of 7–
30 Hz has been applied.

& CSSP: Bandpass filter is the same as in CSP. The sample
point delay τ value was chosen from 1 to 15 (as in [8]),
which was selected by performing 10-fold cross-validation
on the train data. The average error rate of the 10-fold cross-
validation for each value of τ is calculated and the value of τ
giving the minimum error rate is selected for testing.

& FBCSP: 6 bandpass filters having bandwidth of 6 Hz in the
rangeof4to40Hzwithnooverlaphavebeenused.Thesewere
adopted from Higashi and Tanaka [8], as using these settings
gave optimal results.Mutual information-based feature selec-
tion has been performed as it gave the best results in [3].

& DFBCSP: 12 bandpass filters with bandwidth of 4 Hz in
the range of 6 to 40 Hz have been used, as described in
[46]. The top four bands were selected using Fisher’s ratio
and further utilized for classification.

& SFBCSP: 17 bandpass filters having bandwidth of 4 Hz
with an overlap of 2 Hz in the range of 4–40 Hz have been
used, as in [56]. The regularization parameter λwas chosen
using 10-fold cross-validation.

& SBLFB: As in [54], 17 bandpass filters having bandwidth of
4Hzwithanoverlapof2Hzintherangeof4–40Hzhavebeen
used.Multiple sub-band features are learned by SBLFB.

& BPSO-CSP: 10 bandpass filters having bandwidth of 4 Hz
in the range of 8 to 30 Hz with an overlap of 2 Hz have
been used. Only 25 selected channels of data were used for
processing as in Wei and Wei [49].

& TFPO-CSP (PSO): Thismethodusesparticle swarmoptimi-
zation (PSO) as the optimization algorithm. The number of
particles for the PSO algorithm is set to 10 because with 10
particles, the optimal solution is found in a reasonable amount
of time. The dimension of each particle is set to 3, where
dimensions represent the lower cutoff frequency, upper cutoff
frequency, and filter order of the butterworth bandpass filter.
The range of the dimensions was set as follows: lower cutoff
frequency[0.50,16.0Hz],uppercutoff frequency [18,32Hz],
and filter order [1, 30]. The frequency rangeswere selected so
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as to include the frequencies of themu and beta rhythms. The
range for the velocitywas set to [− 4, 4]. Themaximumnum-
ber of iterations (Imax) was set to 35, which was decided after
carrying out a number of experiments. In TFPO-CSP (PSO),
differentsubjectshavedifferent fitnessconditionvalues.Thus,
several trial runs were conducted without the use of fitness
condition in order to determine the minimum error rate that
can be achieved by the TFPO-CSP (PSO) for each subject. It
was noted that theminimumerror rates that could be obtained
for each subject were similar to the best error rate that can be
achieved amongst the DFBCSP and SBLFB methods.
Therefore, the fitness condition value used for each subject
was set to the minimum of the error rates obtained amongst
the DFBCSP and SBLFBmethods.

& TFPO-CSP (GA): This method uses genetic algorithm (GA)
as the optimization algorithm. The frequency ranges, filter or-
der, maximum number of iterations, and fitness conditions
weresameasthoseusedforTFPO-CSP(PSO).Thepopulation
sizewasset to10,whichissameas thenumberofparticlesused
for TFPO-CSP (PSO). Tournament selection has been
employed with tournament size of 3. A crossover percentage
of 0.7 andmutation percentage of 0.3 have been used. Fitness-
basedsurvivorselection isperformed.ForBCICompetitionIII
dataset IVa, the fitness conditions were set to 10, 1.5, 25, 5.0,
and4.5forsubjectsaa,al,av,aw,anday, respectively,while for
BCICompetition IVdataset I, the fitnessconditionswereset to
13, 41.5, 33, 21, 11, 14, and 8 for subjects a to g, respectively.

& TFPO-CSP (GA)*: All experimental settings were same
as TFPO-CSP (GA), except that only 25 selected channels
of data as used in BPSO-CSP were used for processing in
order to compare our proposed method with BPSO-CSP.

& TFPO-CSP (ABC): This method uses artificial bee colony
(ABC) as the optimization algorithm. The frequency
ranges, filter order, maximum number of iterations, and
fitness conditions were same as those used for TFPO-CSP
(PSO). The colony size was set to 10, which is same as the
number of particles used for TFPO-CSP (PSO).

2.3 Proposed TFPO-CSP method

Theframeworkfor theproposedTFPO-CSPpredictor ispresented
in Fig. 1. The temporal filtering of the MI EEG signal is integral
because CSP mostly depends on responsive frequency band in
order to performwell. Unfiltered signal or filtering the signalwith
inappropriate frequencybandwould result inpoorperformanceof
the system.Moreover, the responsive frequency band varies from
subject to subject and thus using a fixed frequency band is detri-
mental in achieving a system with optimal performance.
Therefore, inorder tofindtheoptimumsubject-specificresponsive
frequency band, GA has been employed for finding optimal filter
band parameters. The proposed TFPO-CSP predictor involves
four phases: temporal filter parameter selection and filtering, spa-
tial filtering, feature extraction, and classification.

The first phase that involves selecting the temporal filter pa-
rameters using GA is the major focus of this paper as it aims to
find a single responsive filter, which can give optimal results. The
GA has been modified and used with our proposed system in
order to select the best parameters (upper cutoff frequency, lower
cutoff frequency, and filter order) of a bandpass butterworth filter.
Once the filter parameters are selected using GA, the raw EEG
signal is bandpass filtered using the selected filtering parameters.
In the second phase, CSP is utilized for spatial filtering. The
variance-based CSP features are then extracted from the spatially
filtered data during the third phase, while classification using
SVM classifier is performed in the final phase. The following
sub-sections present each of the phases in more detail.

The ABC [10] and PSO [27] algorithms have also been mod-
ified to be used as the optimization algorithm in our proposed
predictor for finding the optimal parameters. Details of the ABC
and PSO algorithms are given in supplementary materials.

2.3.1 Optimization of temporal filter parameters

For optimizing the parameters of the temporal filter, we have
employed GA [52]. GA is based on natural selection and

Yes

Multi-channel EEG

training samples

Training Phase

GA initialization

Fitness value

evaluation

Crossover and

Mutation

Fitness value

evaluation

Generate new

population

Update best

position

Termination condition

satisfied?

No

Bandpass filter

B
a
n
d
p
a
s
s
fi
lt
e
r
p
a
r
a
m
e
te
r
s

CSP

Multi-channel EEG

Test Samples

Test Phase

Bandpass filter

Spatial filtering

Wcsp

Feature

Extraction

Train SVM

classifier

Feature

Extraction

Classification of test

samples using

trained SVMclassifier

Class ID

GA

Fig. 1 Framework for the
proposed TFPO-CSP predictor
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genetics and is mostly used for optimization and search prob-
lems. A population of chromosomes (solutions) is generated
with dimension equal to the number of parameters to be opti-
mized. This can be done either randomly or by heuristic initial-
ization. The first generation is referred to as the parents.
Children are then generated from selected parents using cross-
over. The selection of parents can be done using various
methods such as Roulette wheel selection, stochastic universal
sampling (SUS), tournament selection, rank selection, and ran-
dom selection. Mutation is then performed on a number of
randomly selected parents to form new mutants. Finally, survi-
vor selection is done and the chromosomes that survive become
the parents for the next iteration. This process is repeated until
the desired fitness condition or the maximum number of itera-
tions is reached. The pseudo code of the proposed framework is
given in Algorithm 1 and 2. The fitness function value referred
to in Algorithm 2 is the error returned by Algorithm 1.

2.4 CSP feature extraction

The CSP technique has gained a lot of attention and has been
widely used in recent years for MI-BCI systems since its incep-
tion, where it has been used for detection of abnormalities in
EEG signal [13]. CSP projects the data to a new time series
maximizing the variance of one class, while minimizing the var-
iance of the other class. A detailed explanation of the CSP algo-
rithm can be found in our previous work [17]. Consider the
bandpass-filtered EEG sample Xn ∈ RC×T, where n denotes the
nth sample, C is the number of channels and T is the number of
time points. The spatially filtered signal Zn can be obtained using

(1), whereWcsp is the CSP spatial filter that is formed by selecting
the first and last m columns of CSP matrix,W.

Zn ¼ WT
CSPX n ð1Þ

The variance-based CSP features of nth sample is then
extracted using (2), where Fi

n is the ith feature of the nth
sample, and var(Z j

n ) denotes the variance of jth row of Zn.

Fi
n ¼ log

var Zi
n

� �

∑2m
j¼1var Z j

n

� �
 !

ð2Þ
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Using the extracted features of each sample, the feature set
is constructed using (3), where N is the number of samples.
Thus, the features of training and test samples are used to
construct the training and test feature sets, respectively.

F ¼
F1
1 F2

1 ⋯ F2m
1

⋮ ⋮ ⋱ ⋮
F1
N F2

N ⋯ F2m
N

2
4

3
5 ð3Þ

2.5 Classification

An SVM classifier with linear kernel is trained using the train-
ing feature set. The test feature set is then used to classify each
of the test samples using the trained SVM classifier model.

Data availability For the benefit of the research community,
the TFPO-CSP algorithm (MATLAB m-file) is available on
our website: http://www.alok-ai-lab.com/publications.php.

3 Results

3.1 Evaluation scheme

The 10 × 10-fold cross-validation scheme is used to evaluate
the performance of all experiments conducted. The trials are
divided into 10 sets. One set is selected as test set while all
others are selected as training sets. Only the training set is used
by GA algorithm to find the best temporal filter parameters.
The fitness function again divides the training set of GA al-
gorithm into 10 sets for performing 10-fold cross-validation.
The average of these cross-validation values is returned by the
fitness function, i.e., the average classification error rate.
Thus, the GBest chromosome returned by GA is used to test
the performance of the initial test set. This procedure is repeat-
ed 10 times with a different set used as test data and remaining
used as training data of GA. The whole procedure was repeat-
ed 10 times and the average of these classification error rates is
presented as results.

3.2 Experimental result analysis

The proposed TFPO-CSP predictor searches for the optimal fre-
quency band and filter order. It can be observed (and suggested in
the literature) that the responsive frequency bands vary between
subjects, and thus different band leads to different outcome. It is
therefore important to give due consideration to band optimiza-
tion. Thus, in order to improve the performance, one aspect is to
evaluate bands using the training dataset. We have evaluated the
effect of filter order on the performance of the BCI system in
Fig. 2. It shows the 10-fold cross-validation error rate for all the
subjects of dataset 1. It can be observed from Fig. 2 that the filter
order has a considerable effect on the overall error rate. Similar
results were obtained for dataset 2 (refer to Fig. S1 of

Fig. 2 Average error rates of 10-fold cross-validation with different
values of filter order (results obtained using dataset 1)

Fig. 3. 10 × 10-fold cross-validation error rates for different methods using public benchmark dataset 1
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supplementary material). This explains the reason for optimizing
the filter order together with the frequency band. Since the clas-
sification error rates are high for larger values of filter order, we
have limited the filter order in the range between 1 and 30.

Two separate experiments were carried out to evaluate the
performance of the proposed system. In the first experiment,
we selected a subset of 25 channels (as in [49]) that are instru-
mental for the neurophysiological discrimination between the
tasks. In the second experiment, all channels of data were
used. The results obtained using dataset 1 and dataset 2 are
shown in Figs. 3 and 4, respectively. The TFPO-CSP (GA)*
indicates the results obtained when selected subset of 25 chan-
nels is used, while the TFPO-CSP (GA) indicates the result
when all channels data are used for processing.

The results obtained show that the proposed TFPO-CSP
predictor outperformed state-of-the-art methods studied in this
paper in terms of the average classification error rates using
either of the three optimization algorithms (PSO, GA, or
ABC). The TFPO-CSP (ABC) and TFPO-CSP (PSO)

methods obtained average error rates that were within ± 1%
of the average error rate obtained using TFPO-CSP (GA).
Furthermore, our proposed method also performed better than
the MKELM approach that achieved average classification
error rate of 12.50%, evaluated on dataset 1. A spatial-
frequency-temporal optimized feature sparse representation-
based classification (SFTOFSRC) method is proposed in
[21] which achieved error rate of 23.89% on dataset 1. The
SFTOFSRC method used multiple frequency bands and mul-
tiple time segments. It also employed channel selection.While
the authors showed that their method improves performance
when sparse regression classification (SRC) with dictionary
optimization is used, it obtained a considerable higher classi-
fication error rate. This could be due to the pre-processing that
may have been used. On the other hand, the TFPO-CSP meth-
od achieved average classification error rate of 10.19% with
common averaging as the only pre-processing step.

Using only selected 25 channels, we were able to achieve
promising results and obtained the minimum average

Fig. 4. 10 × 10-fold cross-validation error rates for different methods using public benchmark dataset 2

Table 1 Ranges of parameters that were selected by TFPO-CSP (PSO), TFPO-CSP (GA), and TFPO-CSP (ABC) approaches for the different subjects
(dataset 1)

Parameter Method Subject

aa al av aw ay

Lower cutoff frequency (Hz) TFPO-CSP (PSO) 11–12 4–11 6–9 8–11 4–10

TFPO-CSP (ABC) 10–13 3–12 6–15 8–12 4–11

TFPO-CSP (GA) 10–12 6–12 6–15 8–11 5–10

Upper cutoff frequency (Hz) TFPO-CSP (PSO) 26–31 20–28 23–30 24–32 22–32

TFPO-CSP (ABC) 23–32 19–32 24–32 21–31 20–32

TFPO-CSP (GA) 27–32 20–32 25–31 19–31 22–32

Filter order TFPO-CSP (PSO) 17–30 2–15 2–29 4–25 4–10

TFPO-CSP (ABC) 1–21 1–30 1–26 3–22 1–28

TFPO-CSP (GA) 9–28 1–29 1–26 2–21 1–20
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classification error rate in comparison with CSP, CSSP,
FBCSP, and BPSO-CSP. It can be noted that our proposed
predictor with 25 channels (TFPO-CSP (GA)*) also shows
very promising results. Therefore, the proposed approach is
also recommended over other competing methods when com-
putation complexity is a requirement, where data from fewer
channels could be used. For dataset 2, subjects a and c
achieved the minimum error rate using TFPO-CSP (GA)
while subjects e and f achieved the minimum error rates using
TFPO-CSP (ABC). The minimum average error rate was ob-
tained using TFPO-CSP (PSO) and TFPO-CSP (ABC) for
dataset 1 and dataset 2, respectively. However, there was no
significant difference compared to the average error rate of
TFPO-CSP (GA) (less than 0.5% difference in error rate).
The SBLFB method also performed well on dataset 2 with
subjects b, d, and g achieving the minimum error rate. The
average error rate is also comparable to that of the proposed
method; however, it did not perform well on dataset 1.

Tables 1 and 2 show the ranges in which the lower and
upper cutoff frequencies and filter orders of the butterworth
bandpass filter were selected using the TFPO-CSP (PSO),
TFPO-CSP (GA), and TFPO-CSP (ABC) approaches for
dataset 1 and dataset 2, respectively. For dataset 1 and dataset
2, it can be noted that the lower cutoff frequency range for all
the subjects is in the range of 4–15 Hz, the upper cutoff fre-
quency is in the range of 19–32Hz, and the filter order is in the
range of 1–30. The range of values (for lower and upper cutoff
frequencies and filter order) that were obtained using the
TFPO-CSP (PSO), TFPO-CSP (ABC), and TFPO-CSP
(GA) were similar. All the frequency ranges are close to the
frequency range of 8–30Hz that includes both themu and beta
rhythms. It is clearly shown that the responsive frequency
bands vary from subject to subject as the range of frequency
bands selected for different subjects varies.

The average, minimum, and maximum numbers of itera-
tions required by the TFPO-CSP (PSO), TFPO-CSP (ABC),
and TFPO-CSP (GA) approaches to select the temporal filter

Table 2 Ranges of parameters that were selected by TFPO-CSP (PSO), TFPO-CSP (GA), and TFPO-CSP (ABC) approaches for the different subjects
(dataset 2)

Parameter Method Subject

a b c d e f g

Lower cutoff frequency (Hz) TFPO-CSP (PSO) 6–12 7–14 6–11 6–12 9–12 7–10 5–14

TFPO-CSP (ABC) 8–12 6–14 5–11 6–14 8–11 6–10 2–15

TFPO-CSP (GA) 7–11 7–13 6–10 8–13 9–12 6–10 4–15

Upper cutoff frequency (Hz) TFPO-CSP (PSO) 21–32 22–31 20–31 24–30 24–32 22–30 23–31

TFPO-CSP (ABC) 20–31 22–32 20–32 20–30 22–32 22–31 23–32

TFPO-CSP (GA) 20–32 20–32 21–32 23–32 22–32 22–31 21–32

Filter order TFPO-CSP (PSO) 2–25 4–28 4–22 1–16 3–19 6–24 1–21

TFPO-CSP (ABC) 1–29 2–27 1–24 1–21 1–14 2–29 1–24

TFPO-CSP (GA) 2–24 1–30 2–26 1–22 1–19 2–23 2–25

Table 3 The average, minimum, and maximum numbers of iterations
taken by TFPO-CSP (PSO), TFPO-CSP (GA), and TFPO-CSP (ABC)
approaches to select the temporal filter parameters (dataset 1)

Iterations Method Subject

aa al av aw ay

Minimum TFPO-CSP (PSO) 1 1 1 2 1

TFPO-CSP (ABC) 3 1 1 1 1

TFPO-CSP (GA) 1 1 1 1 1

Average TFPO-CSP (PSO) 6 2 4 25 2

TFPO-CSP (ABC) 9 2 8 8 2

TFPO-CSP (GA) 10 1 2 3 2

Maximum TFPO-CSP (PSO) 35 17 15 35 17

TFPO-CSP (ABC) 14 9 14 35 6

TFPO-CSP (GA) 35 1 8 15 12

Table 4 The average, minimum, and maximum numbers of iterations
taken by TFPO-CSP (PSO), TFPO-CSP (GA), and TFPO-CSP (ABC)
approaches to select the temporal filter parameters (dataset 2)

Iterations Method Subject

a b c d e f g

Minimum TFPO-CSP (PSO) 1 1 1 5 1 1 1

TFPO-CSP (ABC) 1 1 1 1 1 1 1

TFPO-CSP (GA) 1 1 1 1 1 1 1

Average TFPO-CSP (PSO) 1 2 5 14 5 4 1

TFPO-CSP (ABC) 5 1 2 1 5 5 1

TFPO-CSP (GA) 3 1 1 1 2 2 1

Maximum TFPO-CSP (PSO) 4 15 21 22 12 8 7

TFPO-CSP (ABC) 35 4 8 5 17 21 8

TFPO-CSP (GA) 25 1 10 2 18 15 1
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parameters for each subject are shown in Tables 3 and 4 for
dataset 1 and dataset 2, respectively. The minimum number of
iterations required by the TFPO-CSP (GA) approach is 1 for
all the subjects. The average number of iterations required for
selecting the temporal filter parameters using the TFPO-CSP
(GA) approach was quite low for all subjects ≤ 3 except for
subject aa of dataset 1 (having value of 10). For subjects aa
and aw of dataset 1 (using TFPO-CSP (PSO)) and subject a of

dataset 2 (using TFPO-CSP (ABC)), the maximum number of
iterations is the maximum number of iteration set during the
experiment (i.e., 35). This may be due to the desired fitness
condition set for subjects aa and aw of dataset 1 and subject a
of dataset 2 being challenging or due to a local minimum that
resulted in the TFPO-CSP (PSO) and TFPO-CSP (ABC), re-
spectively, taking longer time to find the desired solution.
TFPO-CSP (GA) obtained the least number of average itera-
tions required to search for the optimal parameters.

Figure 5 shows the surface plot in 3D space of the classi-
fication accuracies (for subject aa of dataset 1) when lower
and upper cutoff frequencies are varied with a fixed filter order
set at 8. It shows that the frequency band selected has a direct
impact on the overall performance of the system and justifies
the need for searching for filter band parameters. A trace of
how a chromosome (for subject aa of dataset 1) moves
through the search space (for TFPO-CSP (GA)) in order to
get to the optimal solution for one of the trial runs is also
shown in Fig. 5 with black and red circles indicating the start
and end points, respectively. It can be seen from Fig. 5 that the
TFPO-CSP (GA) algorithm maneuvers through the search
space and successfully finds the optimal solution (shown as
connecting lines).

To further verify the performance of our predictor with GA
as the optimization algorithm (TFPO-CSP (GA)), the power
spectrum density (PSD) of the two-class MI EEG data is con-
ducted. The average PSD of each task for all five subjects
derived over trials using all channels data is shown in Fig. 6.
It can be noted that the proposed TFPO-CSP (GA) approach
effectively searched for a filter band that gives minimum error
rate between the two tasks, i.e., the frequency band in which
the difference in PSD of the two tasks is largest. This is further
explained in Fig. 5 where it is shown that the particle success-
fully selects the filter parameters that give the optimal solu-
tion. Thus, the findings reveal that the most responsive fre-
quency band varies from subject to subject. This explains the
need for automatic subject-specific frequency band selection
for optimal performance.

4 Discussion

To further show the effectiveness of the proposed method,
Fig. 7 shows the topographic plot of the spatial filters that
are learned using the CSP and TFPO-CSP methods (spatial
filters learned during one of the random runs using subject aw
of dataset 1). It can be seen that the spatial filters learned by
the TFPO-CSP method highly correlate with the two MI tasks
(right hand and left foot) as they are contralaterally well local-
ized in the left and right sensorimotor cortex regions. We also
tested the classification performance of the learned spatial
filters of subject aw shown in Fig. 7 and obtained 89.29%
and 96.43% classification accuracies (on test data) using

Fig. 6 Average power spectrum density of the EEG dataset for the five
subjects of dataset 1 (using all the channels data)

Fig. 5 Surface plot showing accuracies for different frequency band
combinations with filter order fixed at 8 using dataset 1 (subject aa).
An example of the trace of how a chromosome moves through the
search space for TFPO-CSP (GA) is also shownwith black and red circles
indicating start and end points
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CSP and TFPO-CSP spatial filters, respectively. This further
validates the results that the spatial filters learned by TFPO-
CSP are able to more effectively discriminate between the two
MI tasks compared to the spatial filters learned by CSP. This
improved performance is due to the use of the most responsive
subject-dependent frequency band, which is automatically
determined using our proposed TFPO-CSP predictor.

In order to keep the computation complexity of the proposed
method to a minimum, we have employed a single frequency
band. Thus, the time (test time) taken for a single trial to be
processed (temporal filtering, spatial filtering, and feature extrac-
tion) and classified using the trained classifier for different
methods is shown in Table 5. The time calculated is the test time
and does not include the training time asmostly offline training is

Fig. 7 The learned spatial filters
for CSP and TFPO-CSP methods
for subject aw of dataset 1 (for
one of the random trial runs)

Table 5 Test time required by
different algorithms for single
trial MI EEG signal classification

Method CSP CSSP FBCSP DFBCSP SBLFB TFPO-CSP (GA)

Time (ms) 3.36 12.30 14.22 10.80 13.10 6.96
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performed for BCI applications. It should be noted that as the
number of bands used is increased, the computation time also
increases, i.e., computation time is directly proportional to the
number of bands used for processing. Our proposed approach
uses a single frequency band and thus has a lower computation
time compared to that of CSSP, FBCSP, DFBCSP, and SBLFB.
The computation time of TFPO-CSP (GA) is higher than that of
CSP due to the fact that filter order of 30 (maximum) is used for
computing the time for TFPO-CSP (GA) approach. If the filter
order is same as that of CSP, then the time for CSP and TFPO-
CSP (GA) methods would also be same. The test time for
TFPO-CSP (ABC) and TFPO-CSP (PSO) will be same as that
of TFPO-CSP (GA) if same filter orders are used. Thus, our
approach can be top choice for use with wearable devices, which
require algorithms that are computationally less expensive so that
it can last longer as they are battery powered. Matlab running on
a personal computer at 3.3 GHz (Intel(R) Core(TM) i3) has been
used for all processing.

The TFPO-CSP predictor with GA is able to successfully
find the optimal filter band parameters that give higher accu-
racy without the use of fitness condition, i.e., allowing the
algorithm to run for maximum number of iterations.
However, the drawback is longer training time. Since the
training procedure can be performed offline, this drawback
can be overcome. Nonetheless, to reduce the training time,
fitness condition has been used to converge to the solution
in a faster manner. The setting of different fitness conditions
for each subject proves vital as the training time is reduced and
the proposed TFPO-CSP with GA is still able to achieve
higher accuracy. The training time required by TFPO-CSP
with PSO, TFPO-CSP with GA, and TFPO-CSP with ABC
is given in Table 6, where Init is the average initialization time
and 1 iter is the average time required by the respective
methods for execution of one complete iteration. Therefore,
the overall average training time for each of the methods will
be the initialization time plus the time taken for one iteration
multiplied by the average number of iterations required by the
respective methods. On overall, the TFPO-CSP (GA) ap-
proach requires the minimum number of iterations to search
for the optimal parameters. Therefore, the TFPO-CSP (GA)
approach is recommended over TFPO-CSP (ABC) and
TFPO-CSP (PSO).

Our proposed predictor obtained the overall minimum error
rates of 10.19% and 19.92% for dataset 1 and dataset 2,
respectively. It outperformed all competingmethods evaluated

in this work achieving an improvement of 3.54% and 0.65%
compared to SBLFB method for dataset 1 and dataset 2,
respectively. In comparison with SFBCSP and DFBCSP, our
predictor achieved an improvement of 4.22% and 0.75% for
dataset 1 while also achieving an improvement of 7.29% and
2.94% for dataset 2, respectively. Our proposed predictor also
outperformed the sparsity-aware method [47] (where weight-
ed averaging has been introduced for estimating the average
covariance matrix, which is used for calculating the CSP spa-
tial filters) that was evaluated on dataset 1, achieving an im-
provement of 2.44%. However, the sparsity-aware method
performed well compared to CSP method, and can be incor-
porated in our predictor, which might further improve the
performance of the system.

It can be noted that for some of the subjects, the lower cutoff
frequencies were in the range of 2–8 Hz, which is lower than the
mu rhythm. The proposed method only finds the band that gives
optimal performance and guarantees that the selected frequency
band contains most of the useful information. However, it does
not guarantee that all the frequencies present in the selected fre-
quency band contain useful information. While searching for the
optimal parameters, it is possible for the proposedmethod to find
a suitable solution that has relatively lower value for lower cutoff
frequency parameter depending on the search space through
which the algorithm maneuvers to find the optimal parameters.
It is possible that no important information is contained by the
signal in the lower frequencies and having or not having these
will make no notable difference in the performance. However, it
should also be noted that very low values of lower cutoff fre-
quency parameter has been obtained using all the three optimi-
zation algorithms for subjects al and ay of dataset 1 and subject g
of dataset 2. This suggests that there is some information in the
lower frequencies, which is causing all the optimization algo-
rithms used to select the lower value for lower cutoff frequency.
Since both datasets have been recorded from healthy subjects,
there is very little chance of abnormal behavior. Thus, further
research needs to be carried out in order to investigate if these
lower frequencies actually contain any useful information about
the different MI tasks. However, according to [11], signal in the
delta band can be caused by some continuous-attention tasks and
signal in theta band can be caused due to a person actively trying
to repress an action. Since the trials in both the datasets are cue
based and the subjects are required to imagine the MI tasks, it is
highly likely that these can be the reason leading to the selection
of low values for lower cutoff frequency parameter for some of
the subjects.

Furthermore, we have performed paired t test with 5% sig-
nificance level to show the significance of the classification
error rate of the proposed method compared to the top 2
performing methods (SBLFB and DFBCSP). The p value
obtained was 0.045 and 0.034 (compared to SBLFB and
DFBCSP, respectively), which shows that significant im-
provements have been achieved.

Table 6 Initialization time and time taken for one iteration during
training that is required by different algorithms

Method TFPO-CSP (PSO) TFPO-CSP (GA) TFPO-CSP (ABC)

Init 1 iter Init 1 iter Init 1 iter

Time (s) 145.44 159.18 128.90 128.95 72.97 145.44
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The main advantage of the proposed TFPO-CSP predictor is
that it automatically finds the responsive frequency band, which
contains significant information for maximum discrimination be-
tween theMI tasks. This also results in the spatial filter learned to
be more effective in discriminating between the different MI
tasks. Furthermore, the TFPO-CSP predictor is able to achieve
enhanced performance using only a single frequency band com-
pared to the competing methods that utilize multiple sub-bands.
This accounts for the low computational complexity of the meth-
od and makes it more suitable for implementation on wearable
devices. This can help in the development of low-cost BCI sys-
tems that will assist people with disabilities to recover their en-
vironmental control capabilities. It can also be beneficial in epi-
leptic seizure detection using EEG signals as being able to
predict/detect pre-seizure more accurately will save more lives
and prevent more accidents. The disadvantage of the TFPO-CSP
predictor is that it requires a longer training time compared to
other competing methods. However, this problem can be over-
come by training the model offline. Moreover, being able to
effectively find filter parameters that will produce optimal results
in a quickerway is desirable for BCI applications that will require
online training. To add on, the range of filter order proposed in
this work is specifically for butterworth filter. If other types of
filters are to be used, then the users will need to investigate and
determine the range for the filter order as different types of filters
behave differently. The users can also simply select maximum
range up to 50 and the proposed TFPO-CSP predictor will auto-
matically find the best value. However, it might take longer time
to find the optimal parameters given a larger search space.

Moreover, the proposed method can be utilized for further
tuning the sub-bands selected by other approaches (such as
SBCSP, FBCSP, DFBCSP, SFBCSP, SBLFB, and
SFTOFSRC) and using dimensionality reduction or feature
selection techniques [32–41] to remove redundant features,
which can further improve the performance of the existing
methods. On the other hand, the use of dictionary optimization
together with SRC can further enhance the performance of the
TFPO-CSP predictor.

5 Conclusion

In this paper, we proposed a new automatic method of finding
the temporal filter parameters for improved MI EEG signal
classification. The parameters of a butterworth filter are tuned
for optimal performance. The proposed method performed
well in selecting subject-specific frequency bands and
outperformed state-of-the-art methods achieving the lowest
classification error rates. The only drawback of the approach
is that it requires a longer training time compared to other
methods. However, this drawback can be avoided since

training is usually performed offline for BCI applications.
The proposed methods capability in finding the temporal filter
parameters that give optimal performance in terms of MI EEG
signal classification together with its low computational com-
plexity (for classification of test samples) makes it a strong
candidate for future BCI systems.
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