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A B S T R A C T

Literature contains over fifty years of accumulated methods proposed by researchers for predicting the sec-
ondary structures of proteins in silico. A large part of this collection is comprised of artificial neural network-
based approaches, a field of artificial intelligence and machine learning that is gaining increasing popularity in
various application areas. The primary objective of this paper is to put together the summary of works that are
important but sparse in time, to help new researchers have a clear view of the domain in a single place. An
informative introduction to protein secondary structure and artificial neural networks is also included for
context. This review will be valuable in designing future methods to improve protein secondary structure pre-
diction accuracy. The various neural network methods found in this problem domain employ varying archi-
tectures and feature spaces, and a handful stand out due to significant improvements in prediction. Neural
networks with larger feature scope and higher architecture complexity have been found to produce better
protein secondary structure prediction. The current prediction accuracy lies around the 84% marks, leaving
much room for further improvement in the prediction of secondary structures in silico. It was found that the
estimated limit of 88% prediction accuracy has not been reached yet, hence further research is a timely demand.

1. Introduction

This study explores the usage of artificial neural networks (ANN) in
protein secondary structure prediction (PSSP) – a problem that has
engaged scientists and researchers for over 3 decades. ANN, or simply
neural networks (NN), have recently gained a lot of popularity in the
realm of computational intelligence, and have been observed to be a
boost in the rather stagnant field of PSSP.

The uniqueness of the PSSP problem has paved the emergence of an
entirely new field in science, one which did not exist a few years ago.
Since the 1950s, numerous methods have been devised for predicting
secondary structure from amino acid sequences. Methods range from
disciplines like biology and physical chemistry to statistics and com-
puter science. In this paper, the use of NN, a recently popular branch of
machine learning, and its relevance in the improvement of prediction
accuracy for the protein secondary structure problem is explored.

The following section, provides a background to protein and its
structure, and an introduction to artificial neural networks (ANN). Then

follows a discussion on parameter optimization for PSSP, the different
NN architectures being used in PSSP, and features being considered in
this domain. Finally, a discussion and conclusion provide insight into
where the research stands currently and what can be expected for the
future of this field.

2. Background

The following sections provide background information on protein
structure, followed by an introduction to NN and deep learning.

2.1. Protein preliminaries

Proteins are macromolecules that carry out indispensable functions
in essentially all biological processes that occur in the human body
(Berg and Tymoczko, 2002), example, metabolism and homeostasis.
They are manufactured in the body within cells using amino acid mo-
lecules that act as protein building blocks. Although there are about 500
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amino acids, only 20 of them are encoded by the genome for building
the proteins required by the human body (Wagner and Musso, 1983;
Sanger, 1959). The amino acids are most likely ingested as part of one's
diet, or recycled within the body. Within cells, protein synthesis takes
place in two complex stages. First, messenger RNA (mRNA) is tran-
scribed from DNA into templates through a process called transcription.
The mRNA templates are then translated into protein chains by orga-
nelles called Ribosomes through a process called translation.

The number of possible amino acid configurations is infinite, con-
sidering that their length and frequency are highly variable. For a set of
100 amino acids, 20100 proteins are possible. However, the human
genome codes approximately 3.5×104 proteins. Therefore, it can be
assumed that relatively less real proteins get synthesized compared to
the theoretical possibility (Otaki et al., 2005). Despite, the number of
biological proteins that exist is still significantly large, and predicting
their structures from amino acid sequences is challenging.

The function of a protein is directly related to its native structure.
Often, distinct amino acid sequences embody a similar structure, and
the resulting structures exhibit similar functionality solely due to the
similarity in their conformations (Sanger, 1959). Many medicinal fields
anticipate the proper prediction tools so that studying certain proteins
from the component amino acid sequences can be easily realized. One
example is exploring encoded proteins based on their three-dimensional
spatial relationships in local concentrations of human cancers (Niu
et al., 2016). Another example is studying structure of Gamma B
Crystallin proteins found in the eye lens to better understand the de-
velopment of cataracts (Umphred-Wilson et al., 2017). Protein mis-
folding has been seen to be the major contributor in development of
many diseases, like type 2 diabetes as well as neurodegenerative dis-
eases such as, Alzheimer's, Parkinson's, Huntington's, and amyotrophic
lateral sclerosis (ALS) (Ken and Justin, 2012), hence, understanding the
folded structures is extremely significant for disease prevention and
treatment.

Biologists have devised four levels of amino acid organization in the
plight to understand protein structures as described below. These are
categorized as primary, secondary, tertiary and quaternary structures
(see Fig. 1). The levels occur in stages, where each lower level is ne-
cessary for the formation of the next level (Pauling et al., 1951; Pauling
and Corey, 1951; Levitt and Chothia, 1976; Garnier et al., 1978;
Anfinsen et al., 1961; Ewbank and Creighton, 1992; Bradley et al.,
1990; Marqusee and Baldwin, 1987; Marqusee et al., 1989; Oas and
Kim, 1988; Roder et al., 1988; Udgaonkar and Baldwin, 1988).

• Primary structure of a protein refers to the linear sequence of amino
acid residues that make up the protein (Sanger, 1952). Amino acid
residues are joined together in long chains by peptide bonds, where
each residue has 2 neighboring residues. The structure forms a
‘backbone’ that runs along the entire peptide chain (see Fig. 1(a)).

• Secondary structure refers to the 3 dimensional local segments of the
protein macromolecule that form after the amino acid residues join
in a sequence and before the protein folds into its tertiary structure.
The secondary structure involves hydrogen bonds along the back-
bone that cause the long chain to fold into local shapes, mainly
helices, strands and coils (see Fig. 1(b)). The standard defining
convention adopted was created by Kabsch and Sander (1983) as the
Dictionary of Protein Secondary Structure (DSSP). This convention
defines 8 groups, however, it is common to group them into 3
general groups of α helix, β sheet, and random coil (Pauling et al.,
1951; Eisenberg, 2003).

• Tertiary structure is the 3 dimensional structure of a protein. It
consists of one long ‘backbone’ consisting of the various secondary
structures and thus further folds in consequence to the amino acid
side chains’ interactions. For example, some area may be hydro-
phobic, which causes it to fold tightly inwards to hide from water
molecules, contributing to a globular conformation. Salt bridges,
hydrogen bonds, and the tight packing of side chains and disulfide

bonds are some forces that contribute to the formation of the ter-
tiary structure (see Fig. 1(c)).

• Quaternary structure refers to the further stabilization of the protein
molecule by bonding with one or more similar tertiary structures via
further non-covalent interactions and disulfide bonding. The final
complex achieves stability and functions as one unit (see Fig. 1(d)).

Apart from the above mentioned four levels of structure, there are
additional classification schemes of protein building blocks. Small
groups of secondary structure units that occur commonly are known as
super-secondary structures, or motifs. Several motifs pack together to
form local semi-independent units called domains. These are helpful in
obtaining evolutionary information about the proteins, as it is seen that
proteins with similar structure do not always share similar sequence,
and domains aid in structural comparison (Richardson, 1981).

In vitro methods of obtaining the detailed structure of proteins in-
clude X-ray crystallography, nuclear magnetic resonance spectroscopy
and electron micrography. Although these methods are relatively ac-
curate, they are time-consuming and costly (Moraes et al., 2014). Due
to these disadvantages, innovative approaches to predict protein
structures, such as machine learning, have become the panacea. In the
early years, Lim (1974) proposed a method that utilized the physico-
chemical characteristics of amino acids to predict protein structure.
Later, a similar approach was also proposed in Ptitsyn and Finkelstein
(1983). Additionally, prediction attempts using sequence patterns and
statistical analysis have also been thoroughly investigated in the early
years of PSSP as listed in Table 1.

2.2. Neural network and deep learning preliminaries

Traditional computing involves human-written instructions in a
computer program. On the contrary, artificial intelligence allows a

Fig. 1. The four levels of organization are shown, namely, primary, secondary,
tertiary and quaternary structures.
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system to modify or write new instructions for itself. One approach of
this latter style is through the use of ANNs. This concept is derived from
the working patterns of the biological neurons in the brain (see Fig. 2).
Just as the millions of neurons in the brain collectively execute the
cognitive processes, ANNs are fashioned in a similar way to carry out
intelligent computation (McCulloch and Pitts, 1943; Heeb, 1949;
Minsky, 1954; Rosenblatt, 1962). Recent popularization of brain-in-
spired architectures exhibits an acceptance and encouragement to
continue further research and application of these methods in various
industries (Otoom, 2016).

An ANN is a network created by at least 2 layers of neuron-like
processing units. The initial layer is called the input layer as it in-
troduces input variables into the network. The final layer is the output
layer, which may contain units for carrying out output classification.
For networks that contain more than 2 layers, the remaining inner
layers are called the hidden layers. A shallow network is one that ide-
ally contains none or one hidden layer. On the other hand, deep net-
work refers to a network of artificial neurons comprising many hidden
layers (refer to Fig. 3). Evidently, deep NNs have been highly successful
in solving complex problems (Bianchini and Scarselli, 2014).

Inside an ANN, complex matrix computations take place throughout
the inner layers. A standard ANN generally accepts a set of input values
in the form of vectors containing feature-values (example x0, x1, x2, …,
xn). The selection of these features is challenging and further under-
standing on this can be obtained from Kwak and Choi (2002). Each unit
(neuron) that is part of the following layer assigns a designated weight
(and other parameters such as bias) to the input, which produces some
output. In supervised learning, the real corresponding output is also
supplied to the algorithm during training. If the produced output does
not match the real output for that particular input, the weights get
adjusted automatically through an algorithm of choice. In large net-
works with high dimensionality like those for the protein structure
prediction problems, backpropagation is often used for adjusting
weights. Backpropagation refers to the method of revisiting the

previous layers and adjusting weights so that the calculated output is
closer to the actual expected output (Rumelhart et al., 1986a,b). This
flow continues until the desired accuracy is obtained or until the spe-
cified number of epochs is reached. The assumed optimal weights and
biases are achieved once training is complete and the network can
apply these parameters to the test inputs for producing predictions as
the network outputs. Once a satisfactory model is achieved, the para-
meters are frozen so that predictions can be made using new input data.

The standard NN has evolved extensively over the years, resulting in
a variety of architectural configurations. Their application to the PSSP
problem will be explored in this paper.

Ever since Kendrew et al. (1958, 1960) and Perutz et al. (1960)
managed to establish the structure of proteins using x-ray crystal-
lography around 1960 (for which Kendrew and Perutz later received
the shared Nobel Prize (1962)), researchers have been attempting to
understand the protein folding problem. By 1988, it was realized that
the PSSP problem would require researchers to move away from tra-
ditional computing onto newer ways of computation (Rooman and
Wodak, 1988; Kneller et al., 1990). Hence, machine learning techniques
such as ANN were explored. Fig. 4 is a graph that represents the ac-
cumulation of the efforts made in improving PSSP with NN over the
past 3 decades.

3. Review of NN in PSSP problems

Exploration of the various methods applied to the PSSP problem
reveals the diversity in approaches undertaken by researches over the
past few decades. Within the NN field of machine learning, the options
are endless when selecting a model for the task of PSSP. The following
sections discuss major concepts relating to the various successful NN
models.

3.1. Parameter optimization

As described earlier, standard feed forward back propagation net-
works have helped give insight into the promising potential of this
machine learning technique. For a very long time, the standard NN was
heavily experimented with in the PSSP domain. Today, there are mul-
tiple architectures to choose from when designing a NN. In 2017,
Dongardive and Abraham (2017) used a standard feed forward NN with
one hidden layer to predict secondary structure given the amino acid
sequence information. Their objective was to find an optimal parameter
set that would produce the best prediction results. The parameters in-
volved were encoding scheme (ES), window size (WS), number of
neurons in the hidden layer (HN) and the type of learning algorithm
(LA). The first parameter ES is chosen from a set of 8 options. Firstly,
the orthogonal encoding scheme is a popular one-hot convention sug-
gested by Holley and Karplus (1989) and has been used in many early
works. Secondly, the hydrophobicity encoding scheme involves
creating a matrix from the hydrophobicity index of each amino acid in
the given sequence. Thirdly, BLOSUM62, a substitution matrix that
includes evolutionary based information, along with the similar
PAM250 mutation matrix as the forth encoding option. The remaining

Table 1
List of early methods that were developed for the PSSP problem. The works are
discriminated according to their approach as either being based on the protein
sequence information or statistical analysis.

Sequence patterns Statistical analysis
Reference Year Reference Year

Levin et al. (1986) 1986 Wu and Kabat (1973) 1973
Nakashima et al. (1986) 1986 Chou and Fasman (1974) 1974
Zvelebil et al. (1987) 1987 Kozo (1977) 1977
Cohen et al. (1983) 1983 Maxfield and Scheraga (1979) 1979
Taylor and Thornton (1983) 1983 Gibrat et al. (1987) 1987
Rooman et al. (1989) 1989 Nagano (1973) 1973
Rooman et al. (1991) 1991 Nagano and Hasegawa (1975) 1975
King and Sternberg (1990) 1990 Schulz and Schirmer (1979) 1979
Cohen et al. (1986) 1986 Biou et al. (1988) 1988
Taylor and Orengo (1989) 1989 Kanehisa (1988) 1988
Sander and Schneider (1991) 1991 Levin and Garnier (1988) 1988
Vriend and Sander (1991) 1991 Fasman (1989) 1989
Rooman et al. (1991) 1991 Garratt et al. (1991) 1991
Presnell et al. (1992) 1992 Muggleton et al. (1992) 1992

Fig. 2. The biological and artificial neuron are shown.
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four encoding schemes were hybrids of the earlier mentioned schemes.
The parameter WS is chosen from a range of odd numbered window
sizes between 3 and 19. The sliding window protocol involves selecting
a variable length of the amino acid sequence, which would correspond
to the rows in the input matrix of the network. The parameter NS re-
ferring to the number of neurons in the hidden layer is picked from the
range 1 to 20 and would determine the overall network topology. The
final parameter LA involved 8 distinct learning algorithms that would
contribute to the best prediction accuracy of the network. These were
gradient descent with momentum and adaptive learning rate, resilient
back propagation algorithm, scaled conjugate gradient algorithm,
conjugate gradient back propagation with Fletcher-Reeves updates,
conjugate gradient back propagation with Polak-Rabiere updates,
conjugate gradient back propagation with Powell-Beale restarts, quasi-
Newton (Broyden-Fletcher-Goldfarb-Shanno) algorithm, and finally
quasi-Newton one-step secant learning algorithm. Dongardive and
Abraham (2017) found that the optimal parameter set in their experi-
ment consisted of BLOSUM62 as the best encoding scheme, window size
of 19, 19 neurons in the hidden layer and one-step secant as the optimal
learning algorithm, which altogether produced a prediction accuracy of
78%. Changing parameters to find the optimal set for a NN model in
PSSP has been a central task since the beginning of the field itself,
starting with Qian and Sejnowski's work in 1988 (Qian and Sejnowski,
1988), where they adjusted the hidden layer, window size and encoding
scheme. This strategy continued to be employed later in early 1990s as
found in Sasagawa and Tajima (1993), Rost and Sander (1993a,b) and
towards the end of the decade as mentioned in Chandonia and Karplus
(1995), Jones (1999). The most common parameter that is seen to be
adjusted is the window size, and the optimal number suggested in the

mentioned works is window size of 13–19.

3.2. Review of different NN architectures

Over the years, various architectures of NN have been devised to
produce best results in certain application areas. While a few of these
architectures are readily applicable to the sequence-based nature of the
PSSP problem, researchers have sought improvement in PSSP by ex-
perimenting with almost all major techniques of NN, as discussed
below.

3.2.1. Recurrent neural network
Recurrent neural network (RNN) is widely known for processing

sequence based problems, and this makes it the first option when
considering NN techniques for PSSP. A successful RNN method for PSSP
is Porter 4.0 (Mirabello and Pollastri, 2013). This method has evolved
over several years as RNN techniques got further refined. The project
was initiated by Baldi, Pollastri and colleagues, where they explored
RNN for PSSP in late 1990s and published their method SSpro in 1999
(Baldi et al., 1999). This method consisted of a bidirectional RNN
(BRNN) that was able to consider past and future elements of the amino
acid sequence when predicting secondary structure. SSpro managed to
reach 76% accuracy, which was exceeded by it's improved version
achieving 78% accuracy in 2002 by incorporating ensembles of the
SSpro model (Pollastri et al., 2002). In the next few years, Pollastri et al.
(2002) and Pollastri and McLysaght (2005) reached 79% accuracy
using Porter – a further improved version of SSpro. Mirabello and
Pollastri (Mirabello and Pollastri, 2013) created a further improved
version of Porter (Pollastri and McLysaght, 2005) called Porter 4.0,
which was based on ensembles of BRNN (Baldi et al., 1999) and
achieved 82.2% accuracy. They followed a cascaded architecture where
a first BRNN predicted secondary structure from the primary sequence
and multiple sequence alignments (MSA), and a second BRNN filtered
the predictions of the first stage. The initial SSpro method was also the
basis for a multi-class variant named SSpro8 created by Magnan and
Baldi (2014). This method includes both sequence similarity and se-
quence-based structural similarity which they claimed to achieve up to
92.91% accuracy for proteins with homologs found in the Protein Data
Bank.

Another successful RNN based method is SPIDER3 (Heffernan et al.,
2017), which is also the result of gradual improvements made to an
initial work. The first method, SPIDER (Lyons et al., 2014), was a NN
model for predicting θ and τ angles in the protein backbone. SPIDER2
(Yang et al., 2014), a NN with three hidden layers, each with 150 units,
was used in three iterations that predicted four different sets of struc-
tural properties: secondary structure, torsion angles, Cα atom based
angles and dihedral angles, and solvent accessible surface area. This
method achieved 82% three state accuracy (Heffernan et al., 2015).
Finally, SPIDER3 was developed to consider the multiple features and
predict secondary structure along with the other mentioned properties,

Fig. 3. A shallow network is compared to a deep network configuration.

Fig. 4. Accumulation of PSSP methods using ANN over the past 3 decades.
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and was a BRNN model that contained long short-term memory (LSTM)
cells. The LSTM cells aid in capturing both local and non-local intra-
sequence relationships efficiently, and the authors hold these re-
sponsible for the improvement in prediction to 84%.

3.2.2. Convolutional neural network
Another variant of ANN is convolutional neural network (CNN) and

is mostly known for its success in image recognition applications. Wang
et al. (2015) created a CNN based method for PSSP and managed to
achieve up to 84% accuracy. This method, deep convolutional neural
fields (DeepCNF) consisted of two modules: conditional random fields
(CRF) module that was initially developed in Wang et al. (2011) and
deep convolutional NN (DCNN) module covering the input to the CRF
(Wang et al., 2016). The researchers emphasized the contribution of the
deep layers in the network to the improvement achieved by the method,
in contrast to the contribution of the network parameters such as
window size. They ran several tests that clearly showed the effects of
increasing the number of hidden layers within the network and the
number of neurons per layer towards the incremental improvement in
SS prediction.

3.2.3. Hybrid neural networks
A few recent PSSP techniques are comprised of multiple archi-

tectures intertwined together to improve the overall network predic-
tion. Li and Yu (2016) used a deep convolutional recurrent NN archi-
tecture (DCRNN) that leveraged CNN with different kernel sizes to
extract multi-scale local contextual features. Due to long-range de-
pendencies existing in amino acid sequences, a BRNN consisting of
gated recurrent unit (GRU) was set up to capture global contextual
features. They achieved up to 85.3% three state accuracy with this
hybrid architecture.

Wang et al. (2017) achieved up to 84.2% accuracy, and also used
DCRNN with GRU, consisting of a feature embedding layer, multiscale
CNN layers for local context extraction, stacked bidirectional RNN
layers for global context extraction, and softmax layers for secondary
structure and solvent accessibility classification.

3.3. Importance of feature selection in NN

Early methods commonly used sliding windows of residue sequence
information as feature values for network inputs. Gradually, addition of
physicochemical properties (PP) and evolutionary based structural in-
formation were also included in the model inputs as they showed to
increase SS prediction accuracy. Faraggi et al. (2012) achieved 83.8%
accuracy by including physicochemical properties like a steric para-
meter (graph shape index), hydrophobicity, volume, polarizability,
isoelectric point, helix probability, and sheet probability, into the NN
model SPINE-X. Their standard NNs were made of two hidden layers
with 101 hidden units, and they also carried out 6 steps of iterative
prediction of secondary structure, real-value residue solvent accessi-
bility (RSA), and torsion angles. SPIDER3 (Heffernan et al., 2017) also
successfully incorporates such physicochemical properties in the NN
model to improve SS prediction. Another useful feature that successful
methods employ is evolutionary based information. These are obtained
from large databases through automatic searches, and include profiles
such as position scoring matrices and hidden Markov models. Rost

(2001) provides an informative background on the various databases
and their usage in PSSP. The BLAST service (Altschul et al., 1997;
BLAST, 2017) allows identification of similar sequences and structures
that evidently enrich the network feature values by taking advantage of
homologous proteins. Successful methods like SPIDER3 (Heffernan
et al., 2017) and JPRED4 (Drozdetskiy et al., 2015; Cole et al., 2007,
2007; Cuff and Barton, 2000; Cuff et al., 1998) also include hidden
Markov model (HMM) profiles to increase the feature space and im-
prove SS prediction. The use of evolutionary information in PSSP has
been comprehensively explored in Heringa (2000). The study shows
that including extensively descriptive features in the NN improves
prediction accuracy as shown in Table 2 (accuracies are obtained from
the cited publications).

4. Discussion

The advancement in technology and growing activity in the area of
bioinformatics research suggests that there is potential for improvement
in the prediction of protein secondary structure in silico. Machine
learning has recently leveraged areas such as online commerce, au-
tonomous cars and speech and image recognition, so much so that most
predictive instances achieve prediction accuracies of up to 99%.
Additionally, the ab initio methods for obtaining protein data that ac-
cumulate into the protein databases are also expected to improve in
reliability and timeliness as protein ab initio technology improves. As
estimated at the beginning of the century (Rost, 2001), the 88% ceiling
has not been reached and there is ample room for improving PSS pre-
diction accuracy, especially given the recent advancements in machine
learning techniques and technology.

Comparing the performance of methods is challenging as so many of
them have been published in the past 3 decades and they differ sig-
nificantly in their approaches and overall style of reporting. An over-
view of the methods and their performance is represented by Fig. 5. A
collective initiative was made with EVA, a web-based server, to eval-
uate automatic structure prediction servers continuously and objec-
tively (Koh et al., 2003). Critical Assessment of Techniques for Protein
Structure Prediction (CASP), also a benchmark determining commu-
nity-wide project, tested protein structure prediction methods including
methods for PSSP. However, while CASP continues to assess protein
structure prediction tools every two years, both of these initiatives
abandoned PSSP-specific evaluation around the year 2004. Ad-
ditionally, a comprehensive review has been carried out in Zhang et al.
(2011) where methods using NN and other machine learning techni-
ques have been evaluated. Challenges of carrying out a review of pre-
diction methods include variation in size and content of datasets used
by the methods, validation methods used, and convention chosen for
denoting validation. The ideal configuration for comparing the various
methods would be to test them all with the same test dataset and carry
out the same validation techniques. It would take significantly long to
complete the training and testing of each method unless powerful
computational resources are available. For this reason, the accuracy
levels claimed by the researchers have been assumed as accurate in this
review. It can be seen through this study that NN has been explored as a
promising strategy for PSSP since the identification of the PSSP problem
itself, however, accuracy had plateaued around the 65% mark. It is the
hybridization of the various NN techniques that have efficiently utilized

Table 2
The major periodically relevant state-of-the-art methods are shown along with the types of feature values they employed in their networks.

Neural network method Accuracy (Q3) Seq info Evo info Physico chem info

Qian &Sejnowski 1988 (Qian and Sejnowski, 1988) 64.3% ✓
PHD 1994 (Rost et al., 1994) 71.4% ✓ ✓
PSIPRED 1997 (Jones, 1999) 76.5% ✓ ✓
JPRED3 2008 (Cole et al., 2007) 81.5% ✓ ✓
SPIDER3 2017 (Heffernan et al., 2017) 84% ✓ ✓ ✓
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the growing databases to produce improving prediction accuracies.
DCRNN (Li and Yu, 2016) and SPIDER3 (Heffernan et al., 2017) are
relatively accurate PSSP methods and can be useful for designing im-
proved new methods.

5. Conclusion

This review work has analyzed the progress of PSSP from the early
ages of discovering 3 dimensional structures of protein molecules
around the 1950s, to today's era of sophisticated machine learning. The
emergence of the field has been explored as the first generation of
single-residue statistics evolved into the second generation of segment
statistics, which later evolved into multi-featured third generation of
PSSP methods that utilize evolutionary information along with physi-
cochemical and structural based information (Rost and Sander, 2000).
It can be seen that improvement can be attributed to the advancement
in the computer hardware, growth in algorithm efficiency, and expan-
sion in the range of inputs that describe the polypeptide properties. The
most recent improved methods lie in the 80-85% accuracy benchmark
and owe the success to the large databases that provide large training
datasets and also support the inclusion of expanding input features. The
limit of the prediction accuracy has been estimated to be around 88%
(Rost, 2001) which has still not been achieved, however, current pro-
gress in NN technology appears to be very promising.
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